【題目】已知:如圖,AB為半圓O的直徑,C是半圓O上一點(diǎn),過(guò)點(diǎn)C作AB的平行線交⊙O于點(diǎn)E,連接AC、BC、AE,EB. 過(guò)點(diǎn)C作CG⊥AB于點(diǎn)G,交EB于點(diǎn)H.
(1)求證:∠BCG=∠EBG;
(2)若,求的值.
【答案】(1)證明見解析;(2)3.
【解析】試題分析:(1)由圓周角定理的推論可知∠ACB=90°,由余角的性質(zhì)可得∠CAB=∠BCG.根據(jù)CE∥AB可證∠CAB=∠ACE,再由等弧所對(duì)的圓周角相等可得∠ACE=∠EBG,從而可證明結(jié)論成立.
(2)由可得, 設(shè)GH=a,利用銳角三角函數(shù)的概念表示出GB=2a,CG=4a. 再根據(jù)△ECH∽△BGH可求出的值.
證明:(1)∵AB是直徑,
∴∠ACB=90°.
∵CG⊥AB于點(diǎn)G,
∴∠ACB=∠ CGB =90°.
∴∠CAB=∠BCG.
∵CE∥AB,
∴∠CAB=∠ACE.
∴∠BCG=∠ACE
又∵∠ACE=∠EBG
∴∠BCG=∠EBG.
(2)解:∵
∴,
由(1)知,∠HBG =∠EBG =∠ACE =∠CAB
∴在Rt△HGB中, .
由(1)知,∠BCG =∠CAB
在Rt△BCG中, .
設(shè)GH=a,則GB=2a,CG=4a.CH=CG-HG=3a.
∵EC∥AB,
∴∠ECH =∠BGH,∠CEH =∠GBH
∴△ECH∽△BGH.
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班同學(xué)從學(xué)校出發(fā)去太陽(yáng)島春游,大部分同學(xué)乘坐大客車先出發(fā),余下的同學(xué)乘坐小轎車20分鐘后出發(fā),沿同一路線行駛.大客車中途停車等候5分鐘,小轎車趕上來(lái)之后,大客車以原速度的繼續(xù)行駛,小轎車保持速度不變.兩車距學(xué)校的路程S(單位:km)和大客車行駛的時(shí)間t(單位:min)之間的函數(shù)關(guān)系如圖所示.下列說(shuō)法中正確的個(gè)數(shù)是( 。
①學(xué)校到景點(diǎn)的路程為40km;
②小轎車的速度是1km/min;
③a=15;
④當(dāng)小轎車駛到景點(diǎn)入口時(shí),大客車還需要10分鐘才能到達(dá)景點(diǎn)入口.
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(模型建立)
(1)如圖1,等腰直角三角形ABC中,∠ACB=90°,CA=CB,直線ED經(jīng)過(guò)點(diǎn)C,過(guò)A作AD⊥ED于點(diǎn)D,過(guò)B作BE⊥ED于點(diǎn)E.
求證:△CDA≌△BEC.
(模型運(yùn)用)
(2)如圖2,直線l1:y=x+4與坐標(biāo)軸交于點(diǎn)A、B,將直線l1繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至直線l2,求直線l2的函數(shù)表達(dá)式.
(模型遷移)
如圖3,直線l經(jīng)過(guò)坐標(biāo)原點(diǎn)O,且與x軸正半軸的夾角為30°,點(diǎn)A在直線l上,點(diǎn)P為x軸上一動(dòng)點(diǎn),連接AP,將線段AP繞點(diǎn)P順時(shí)針旋轉(zhuǎn)30°得到BP,過(guò)點(diǎn)B的直線BC交x軸于點(diǎn)C,∠OCB=30°,點(diǎn)B到x軸的距離為2,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)研究,人體內(nèi)血乳酸濃度升高是運(yùn)動(dòng)后感覺疲勞的重要原因,運(yùn)動(dòng)員未運(yùn)動(dòng)時(shí),體內(nèi)血乳酸濃度水平通常在40mg/L以下;如果血乳酸濃度降到50mg/L以下,運(yùn)動(dòng)員就基本消除了疲勞,體育科研工作者根據(jù)實(shí)驗(yàn)數(shù)據(jù),繪制了一副圖象,它反映了運(yùn)動(dòng)員進(jìn)行高強(qiáng)度運(yùn)動(dòng)后,體內(nèi)血乳酸濃度隨時(shí)間變化而變化的函數(shù)關(guān)系.
下列敘述正確的是
A. 運(yùn)動(dòng)后40min時(shí),采用慢跑活動(dòng)方式放松時(shí)的血乳酸濃度與采用靜坐方式休息時(shí)的血乳酸濃度相同
B. 運(yùn)動(dòng)員高強(qiáng)度運(yùn)動(dòng)后最高血乳酸濃度大約為350mg/L
C. 運(yùn)動(dòng)員進(jìn)行完劇烈運(yùn)動(dòng),為了更快達(dá)到消除疲勞的效果,應(yīng)該采用慢跑活動(dòng)方式來(lái)放松
D. 采用慢跑活動(dòng)方式放松時(shí),運(yùn)動(dòng)員必須慢跑80min后才能基本消除疲勞
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB = 6cm,∠CAB = 25°,P是線段AB上一動(dòng)點(diǎn),過(guò)點(diǎn)P作PM⊥AB交射線AC于點(diǎn)M,連接MB,過(guò)點(diǎn)P作PN⊥MB于點(diǎn)N.設(shè)A,P兩點(diǎn)間的距離為xcm,P,N兩點(diǎn)間的距離為ycm.(當(dāng)點(diǎn)P與點(diǎn)A或點(diǎn)B重合時(shí),y的值均為0)小海根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.
下面是小海的探究過(guò)程,請(qǐng)補(bǔ)充完整:
(1)通過(guò)取點(diǎn)、畫圖、測(cè)量,得到了x與y的幾組值,如下表:
x/cm | 0.00 | 0.60 | 1.00 | 1.51 | 2.00 | 2.75 | 3.00 | 3.50 | 4.00 | 4.29 | 4.90 | 5.50 | 6.00 |
y/cm | 0.00 | 0.29 | 0.47 | 0.70 | 1.20 | 1.27 | 1.37 | 1.36 | 1.30 | 1.00 | 0.49 | 0.00 |
(說(shuō)明:補(bǔ)全表格時(shí)相關(guān)數(shù)值保留兩位小數(shù))
(2)建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;
(3)結(jié)合畫出的函數(shù)圖象,解決問(wèn)題:當(dāng)y=0.5時(shí),與之對(duì)應(yīng)的值的個(gè)數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一般地,我們把半徑為1的圓叫做單位圓,在平面直角坐標(biāo)系xOy中,設(shè)單位圓的圓心與坐標(biāo)原點(diǎn)O重合,則單位圓與x軸的交點(diǎn)分別為(1,0),(﹣1,0),與y軸的交點(diǎn)分別為(0,1),(0,﹣1).在平面直角坐標(biāo)系xOy中,設(shè)銳角α的頂點(diǎn)與坐標(biāo)原點(diǎn)O重合,α的一邊與x軸的正半軸重合,另一邊與單位圓交于點(diǎn)P(x1,y1),且點(diǎn)P在第一象限.
(1)求x1(用含α的式子表示);y1(用含α的式子表示);
(2)將射線OP繞坐標(biāo)原點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)90°后與單位圓交于點(diǎn)Q(x2,y2).
①判斷y1與x2的數(shù)量關(guān)系,并證明;
②寫出y1+y2的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,在△ABC中,AD,AE分別是△ABC的高和角平分線,若∠B=40°,∠C=60°.求∠DAE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)不透明的盒子里,裝有四個(gè)分別標(biāo)有數(shù)字1,2,3,4的小球,它們的形狀、大小、質(zhì)地等完全相同,小明先從盒子里隨機(jī)取出一個(gè)小球,記下數(shù)字為x,放回盒子搖勻后,再由小華隨機(jī)取出一個(gè)小球,記下數(shù)字為y.
(1)用列表法或畫樹形圖表示出(x,y)的所有可能出現(xiàn)的結(jié)果;
(2)求小明、小華各取一次小球所確定的點(diǎn)(x,y)落在二次函數(shù)y=x2的圖象上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:∠MON=30°,點(diǎn)A1、A2、A3…在射線ON上,點(diǎn)B1、B2、B3…在射線OM上,△A1B1A2、△A2B2A3、△A3B3A4…均為等邊三角形,若,則△A6B6A7的邊長(zhǎng)為( 。
A.6B.12C.16D.32
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com