【題目】設(shè)函數(shù)y1y2=﹣k0).

1)當(dāng)2x3時(shí),函數(shù)y1的最大值是a,函數(shù)y2的最小值是a4,求ak的值.

2)設(shè)m0,且m≠﹣1,當(dāng)xm時(shí),y1p;當(dāng)xm+1時(shí),y1q.圓圓說(shuō):“p一定大于q”.你認(rèn)為圓圓的說(shuō)法正確嗎?為什么?

【答案】1a2,k4;(2)圓圓的說(shuō)法不正確,理由見解析

【解析】

1)由反比例函數(shù)的性質(zhì)可得,;﹣a4,;可求a的值和k的值;

2)設(shè)mm0,且﹣1m00,將xm0,xm0+1,代入解析式,可求pq,即可判斷.

解:(1)∵k02x3,

y1x的增大而減小,y2x的增大而增大,

∴當(dāng)x2時(shí),y1最大值為,;

當(dāng)x2時(shí),y2最小值為﹣a4,;

,得:a2,k4

2)圓圓的說(shuō)法不正確,

理由如下:設(shè)mm0,且﹣1m00

m00,m0+10

∴當(dāng)xm0時(shí),py1

當(dāng)xm0+1時(shí),qy1,

p0q,

∴圓圓的說(shuō)法不正確.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知OTRtABO斜邊AB上的高線,AO=BO.以O為圓心,OT為半徑的圓交OA于點(diǎn)C,過(guò)點(diǎn)C作⊙O的切線CD,交AB于點(diǎn)D.則下列結(jié)論中錯(cuò)誤的是(  )

A.DC=DTB.AD=DTC.BD=BOD.2OC=5AC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,CD⊙O上兩點(diǎn),且在直徑AB兩側(cè),連結(jié)CDAB于點(diǎn)E,G上一點(diǎn),∠ADC∠G

1)求證:∠1∠2

2)點(diǎn)C關(guān)于DG的對(duì)稱點(diǎn)為F,連結(jié)CF,當(dāng)點(diǎn)F落在直徑AB上時(shí),CF10tan∠1,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線yax2+bx+c的對(duì)稱軸是直線x=﹣2.拋物線與x軸的一個(gè)交點(diǎn)在點(diǎn)(﹣4,0)和點(diǎn)(﹣3,0)之間,其部分圖象如圖所示,下列結(jié)論中正確的個(gè)數(shù)有(  )①4ab0;②c3a;③關(guān)于x的方程ax2+bx+c2有兩個(gè)不相等實(shí)數(shù)根;④b2+2b4ac

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為4的正方形ABCD中,點(diǎn)E為對(duì)角線AC上一動(dòng)點(diǎn)(點(diǎn)E與點(diǎn)AC不重合),連接DE,作EFDE交射線BA于點(diǎn)F,過(guò)點(diǎn)EMNBC分別交CD,AB于點(diǎn)M、N,作射線DF交射線CA于點(diǎn)G

1)求證:EFDE

2)當(dāng)AF2時(shí),求GE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩地高速鐵路建設(shè)成功,一列動(dòng)車從甲地開往乙地,一列普通列車從乙地開往甲地,兩車均勻速行駛并同時(shí)出發(fā),設(shè)普通列車行駛的時(shí)間為x(小時(shí)),兩車之間的距離為y(千米),圖中的折線表示yx之間的函數(shù)關(guān)系,下列說(shuō)法:

①甲、乙兩地相距1800千米;

②點(diǎn)B的實(shí)際意義是兩車出發(fā)后4小時(shí)相遇;

m6n900;

④動(dòng)車的速度是450千米/小時(shí).

其中不正確的是(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC的面積為4,分別取ACBC兩邊的中點(diǎn)A1,B1,記△A1B1C的面積為S1;再分別取A1C,B1C的中點(diǎn)A2,B2,記△A2B2C的面積為S2,再分別取A2C,B2C的中點(diǎn)A3,B3,記△A3B3C的面積為S3;則S3的值等于_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線yx2mx+4y軸交于點(diǎn)C,過(guò)點(diǎn)Cx軸的平行線交拋物線于點(diǎn)B,點(diǎn)A在拋物線上,點(diǎn)B關(guān)于點(diǎn)A的對(duì)稱點(diǎn)D恰好落在x軸負(fù)半軸上,過(guò)點(diǎn)Ax軸的平行線交拋物線于點(diǎn)E.若點(diǎn)A、D的橫坐標(biāo)分別為1、﹣1,則線段AE與線段CB的長(zhǎng)度和為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為響應(yīng)國(guó)家“垃圾分類進(jìn)校園”的號(hào)召,某校準(zhǔn)備購(gòu)買新的分類垃圾箱進(jìn)行更換,已知購(gòu)買5個(gè)A類垃圾箱和4個(gè)B類垃圾箱需花費(fèi)1600元,購(gòu)買3個(gè)A類垃圾箱的費(fèi)用恰好等于購(gòu)買4個(gè)B類垃圾箱的費(fèi)用.

1)求購(gòu)買一個(gè)A類垃圾箱和一個(gè)B類垃圾箱各需多少元;

2)該校計(jì)劃用不超過(guò)9000元的經(jīng)費(fèi)購(gòu)買A類和B類垃圾箱共50個(gè),其中A類垃圾箱的數(shù)量不低于25個(gè),則本次可以選擇的方案有幾種;

3)在(2)的條件下哪種方案的費(fèi)用最低,最低費(fèi)用是多少元.

查看答案和解析>>

同步練習(xí)冊(cè)答案