【題目】如圖,分別過第二象限內(nèi)的點,軸的平行線,與,軸分別交于點,,與雙曲線分別交于點,

下面三個結(jié)論,

①存在無數(shù)個點使

②存在無數(shù)個點使;

③存在無數(shù)個點使

所有正確結(jié)論的序號是__________

【答案】①②③

【解析】

如圖,設(shè)Cm),Dn,),則Pn,),利用反比例函數(shù)k的幾何意義得到SAOC=3,SBOD=3,則可對①進行判斷;根據(jù)三角形面積公式可對②進行判斷;通過計算S四邊形OAPBSACD得到mn的關(guān)系可對對③進行判斷.

解:如圖,設(shè)Cm,),Dn,),則Pn,),
SAOC=3,SBOD=3,
SAOC=SBOD;所以①正確;
SPOA=- ,SPOB=-,
SPOA=SPOB;所以②正確;
S四邊形OAPB=-n× ,
∴當(dāng)- ,即m2-mn-2n2=0,所以m=2n(舍去)或m=-n,此時P點為無數(shù)個,所以③正確.
故答案為①②③.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校在以放飛青春夢想,展示你我風(fēng)采為主題的校園文化藝術(shù)節(jié)期間,舉辦了.歌唱,.舞蹈,.繪畫,.演講共四個類別的比賽,要求每位學(xué)生必須參加且僅能參加一個類別.小紅隨機調(diào)查了部分學(xué)生的報名情況,并繪制了下列兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖中的信息解答下列問題:

1)本次調(diào)查的學(xué)生總?cè)藬?shù)是多少?扇形統(tǒng)計圖中部分的圓心角度數(shù)是多少?

2)請將條形統(tǒng)計圖補充完整.

3)若全校共有1500名學(xué)生,請估計該校報名參加繪畫和演講兩個類別的比賽的學(xué)生共有多少人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為2,點EBC的中點,AEBD交于點P,FCD上一點,連接AF分別交BD,DE于點M,NAFDE,連接PN,則以下結(jié)論中:①SABM4SFDM;②PN;③tanEAF;④△PMN∽△DPE.正確的是________(填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形中,,點邊上一動點(與點不重合),連接的兩邊所在射線以點為中心,順時針旋轉(zhuǎn)分別交射線于點

1)依題意補全圖形;

2)若,求的大小(用含的式子表示) ;

3)用等式表示線段之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形的內(nèi)接四邊形,對角線、交于,

1)求證:;

2)作的角分線于點,連接,若,連接、,交于,求證:;

3)在(2)的條件下,連接,延長于點,若,,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠BAC=90°,點D是邊BC上的動點,連接AD,點C關(guān)于直線AD的對稱點為點E,射線BE與射線AD交于點F.

1)在圖1中,依題意補全圖形;

2)記),求的大小;(用含的式子表示)

3)若△ACE是等邊三角形,猜想EFBC的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點為拋物線上一動點,以為頂點,且經(jīng)過原點的拋物線,記作“”,設(shè)其與軸另一交點為,點的橫坐標(biāo)為

1)①當(dāng)為直角三角形時,________

②當(dāng)為等邊三角形時,求此時“”的解析式;

2)若點的橫坐標(biāo)分別為1,23,……為正整數(shù))時,拋物線“”,分別記作“”,“”…“”,設(shè)其與軸另一交點分別為,,過,,,…,軸的垂線,垂足分別為,,,…,

的坐標(biāo)為________,________;(用含的代數(shù)式表示)

②當(dāng)時,求的值;

③是否存在這樣的,使得?若存在,求的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知拋物線、為常數(shù))的頂點為,等腰直角三角形的頂點的坐標(biāo)為,的坐標(biāo)為,直角頂點在第四象限.

1)如圖,若該拋物線經(jīng)過、兩點,求該拋物線的函數(shù)表達式;

2)平移(1)中的拋物線,使頂點在直線上滑動,且與交于另一點

①若點在直線下方,且為平移前(1)中的拋物線上的點,當(dāng)以、、三點為頂點的三角形是等腰直角三角形時,求出所有符合條件的點的坐標(biāo);

②取的中點,連接,求的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知矩形ABCD,AB=4,AD=3,點E為邊DC上不與端點重合的一個動點,連接BE,將BCE沿BE翻折得到BEF,連接AF并延長交CD于點G,則線段CG的最大值是( )

A.1B.1.5C.4-D.4-

查看答案和解析>>

同步練習(xí)冊答案