【題目】關(guān)于x 的一元二次方程a x2 + bx + c = 0(a>0)有兩個(gè)不相等且非零的實(shí)數(shù)根,探究a,b,c滿足的條件.
小華根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),認(rèn)為可以從二次函數(shù)的角度看一元二次方程,下面是小華的探究過(guò)程:第一步:設(shè)一元二次方程ax2 +bx+c = 0(a>0)對(duì)應(yīng)的二次函數(shù)為y = ax2 +bx +c(a>0);
第二步:借助二次函數(shù)圖象,可以得到相應(yīng)的一元二次方程中a,b,c滿足的條件,列表如下:
方程兩根的情況 | 對(duì)應(yīng)的二次函數(shù)的大致圖象 | a,b,c滿足的條件 |
方程有兩個(gè) 不相等的負(fù)實(shí)根 | ||
①_______ | ||
方程有兩個(gè) 不相等的正實(shí)根 | ②__________ | ③____________ |
(1)請(qǐng)幫助小華將上述表格補(bǔ)充完整;
(2)參考小華的做法,解決問(wèn)題:
若關(guān)于x的一元二次方程有一個(gè)負(fù)實(shí)根和一個(gè)正實(shí)根,且負(fù)實(shí)根大于-1,求實(shí)數(shù)的取值范圍.
【答案】(1)①方程有一個(gè)負(fù)實(shí)根,一個(gè)正實(shí)根;②詳見(jiàn)解析;③;(2)
【解析】
(1)根據(jù)二次函數(shù)與一元二次方程的關(guān)系和二次函數(shù)與系數(shù)的關(guān)系作答即可;
(2)根據(jù)題意得出關(guān)于m的不等式組,解不等式組即可.
解:(1)補(bǔ)全表格如下:
方程兩根的情況 | 對(duì)應(yīng)的二次函數(shù)的大致圖象 | a,b,c滿足的條件 |
方程有兩個(gè) 不相等的負(fù)實(shí)根 | ||
①方程有一個(gè)負(fù)實(shí)根,一個(gè)正實(shí)根 | ||
方程有兩個(gè) 不相等的正實(shí)根 | ② | ③_________ |
故答案為: ①方程有一個(gè)負(fù)實(shí)根,一個(gè)正實(shí)根;②;③;
(2)解:設(shè)一元二次方程對(duì)應(yīng)的二次函數(shù)為:,
∵一元二次方程有一個(gè)負(fù)實(shí)根,一個(gè)正實(shí)根,且負(fù)實(shí)根大于-1,
∴,解得.
∴m的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,M、N分別是AD、BC的中點(diǎn),P、Q分別是BM、DN的中點(diǎn).
(1)求證:△MBA≌△NDC;
(2)四邊形MPNQ是什么樣的特殊四邊形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),的坐標(biāo)分別為,,拋物線的頂點(diǎn)在折線上運(yùn)動(dòng).
(1)當(dāng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),拋物線與軸交點(diǎn)坐標(biāo)為.
①用含的代數(shù)式表示.
②求的取值范圍.
(2)當(dāng)拋物線與的邊有三個(gè)公共點(diǎn)時(shí),試求出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是⊙P的直徑,點(diǎn)在⊙P上,為⊙P外一點(diǎn),且∠ADC=90°,直線為⊙P的切線.
⑴ 試說(shuō)明:2∠B+∠DAB=180°
⑵ 若∠B=30°,AD=2,求⊙P的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料:
在數(shù)學(xué)課上,老師提出利用尺規(guī)作圖完成下面問(wèn)題:
根據(jù)小蕓設(shè)計(jì)的尺規(guī)作圖過(guò)程,
(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)
(2)完成下面的證明:
證明:連接OA,OB,OC,
由作圖可知 OA=OB=OC( )(填推理的依據(jù))
∴⊙O為△ABC的外接圓;
∵點(diǎn)C,P在⊙O上,
∴∠APB=∠ACB.( )(填推理的依據(jù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:⊙O的半徑為13cm,弦AB=24cm,弦CD=10cm,AB//CD.則這兩條平行弦AB,CD之間的距離是 ________________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1,菱形ABCD的頂點(diǎn)A,D在直線上,∠BAD=60°,以點(diǎn)A為旋轉(zhuǎn)中心將菱形ABCD順時(shí)針旋轉(zhuǎn)α(0°<α<30°),得到菱形AB′C′D′,B′C′交對(duì)角線AC于點(diǎn)M,C′D′交直線l于點(diǎn)N,連接MN.
(1)當(dāng)MN∥B′D′時(shí),求α的大。
(2)如圖2,對(duì)角線B′D′交AC于點(diǎn)H,交直線l與點(diǎn)G,延長(zhǎng)C′B′交AB于點(diǎn)E,連接EH.當(dāng)△HEB′的周長(zhǎng)為2時(shí),求菱形ABCD的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,邊長(zhǎng)為2的等邊三角形AEF的頂點(diǎn)E、F分別在BC和CD上,下列結(jié)論:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=.
其中正確的序號(hào)是 (把你認(rèn)為正確的都填上).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,平面直角坐標(biāo)系中,直線 y1=x+3與拋物線y2=﹣+2x 的圖象如圖,點(diǎn)P是 y2 上的一個(gè)動(dòng)點(diǎn),則點(diǎn)P到直線 y1 的最短距離為()
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com