【題目】1,菱形ABCD的頂點(diǎn)A,D在直線上,∠BAD60°,以點(diǎn)A為旋轉(zhuǎn)中心將菱形ABCD順時(shí)針旋轉(zhuǎn)αα30°),得到菱形ABCD,BC交對(duì)角線AC于點(diǎn)MCD交直線l于點(diǎn)N,連接MN

1)當(dāng)MNBD時(shí),求α的大。

2)如圖2,對(duì)角線BDAC于點(diǎn)H,交直線l與點(diǎn)G,延長(zhǎng)CBAB于點(diǎn)E,連接EH.當(dāng)HEB的周長(zhǎng)為2時(shí),求菱形ABCD的周長(zhǎng).

【答案】(1)15°;(2)8.

【解析】

1)四邊形AB′C′D′有一個(gè)角為60°的菱形,MN∥B′C′,可以得到△AB′D′△B′C′D′都是等邊三角形,可證得△AB′M≌△AD′NSAS),由∠CAD∠BAD30°,即可求得答案;

2)在△AE△AG中,∠AE=∠AG=60°, ∠EA=∠GA,A=A,可證得△AEB′≌△AGD′AAS),還可以證得△AHE≌△AHGSAS),得到B′D′=2,繼而求得答案.

1四邊形AB′C′D′是菱形,

∴AB′B′C′C′D′AD′,

∵∠B′AD′∠B′C′D′60°,

∴△AB′D′,△B′C′D′是等邊三角形,

∵M(jìn)N∥B′C′,

∴∠C′MN∠C′B′D′60°∠CNM∠C′D′B′60°,

∴△C′MN是等邊三角形,

∴C′MC′N,

∴MB′ND′

∵∠AB′M∠AD′N120°,AB′AD′,

∴△AB′M≌△AD′NSAS),

∴∠B′AM∠D′AN,

∵∠CAD∠BAD30°

∴∠DAD′15°,

∴α15°

2)在△AB`E△AD`G中,∠AB`E=∠AD`G,∠EAB`=∠GAD`,AB`=AD`

∴△AEB′≌△AGD′AAS),

∴EB′GD′,AEAG,

∵AHAH,∠HAE∠HAG,

∴△AHE≌△AHGSAS),

∴EHGH,

∵△EHB′的周長(zhǎng)為2

∴EH+EB′+HB′B′H+HG+GD′B′D′2,

∴AB′AB2,

菱形ABCD的周長(zhǎng)為8

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,ACB=90°,BE是AC邊上的中線,點(diǎn)D在射線BC上.

發(fā)現(xiàn):如圖1,點(diǎn)D在BC邊上,CD:BD=1:2,AD與BE相交于點(diǎn)P,過點(diǎn)A作AFBC,交BE的延長(zhǎng)線于點(diǎn)F,求的值為.

解決問題:如圖2,在ABC中,ACB=90°,點(diǎn)D在BC的延長(zhǎng)線上,AD與AC邊上的中線BE的延長(zhǎng)線交于點(diǎn)P,DC:BC=1:2.求的值.

應(yīng)用:若CD=2,AC=6,求BP的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙P的直徑,點(diǎn)在⊙P上,為⊙P外一點(diǎn),且∠ADC90°,直線為⊙P的切線.

試說明:2B+∠DAB180°

若∠B30°AD2,求⊙P的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x 的一元二次方程a x2 + bx + c = 0a>0)有兩個(gè)不相等且非零的實(shí)數(shù)根,探究a,bc滿足的條件.

小華根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),認(rèn)為可以從二次函數(shù)的角度看一元二次方程,下面是小華的探究過程:第一步:設(shè)一元二次方程ax2 +bx+c = 0a>0)對(duì)應(yīng)的二次函數(shù)為y = ax2 +bx +ca>0);

第二步:借助二次函數(shù)圖象,可以得到相應(yīng)的一元二次方程中ab,c滿足的條件,列表如下:

方程兩根的情況

對(duì)應(yīng)的二次函數(shù)的大致圖象

a,b,c滿足的條件

方程有兩個(gè)

不相等的負(fù)實(shí)根

_______

方程有兩個(gè)

不相等的正實(shí)根

__________

____________

1)請(qǐng)幫助小華將上述表格補(bǔ)充完整;

2)參考小華的做法,解決問題:

若關(guān)于x的一元二次方程有一個(gè)負(fù)實(shí)根和一個(gè)正實(shí)根,且負(fù)實(shí)根大于-1,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是正三角形ABC內(nèi)的一點(diǎn),且PA=6,PB=8,PC=10,若將PAC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)后得到P′AB.

(1)求點(diǎn)P與點(diǎn)P′之間的距離;

(2)求∠APB的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等邊三角形ABC,O為△ABC內(nèi)一點(diǎn),連接OA,OB,OC,將△BAO繞點(diǎn)B旋轉(zhuǎn)至△BCM.

1)依題意補(bǔ)全圖形;

2)若OA= OB= ,OC=1,求∠OCM的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知菱形,是動(dòng)點(diǎn),邊長(zhǎng)為4 ,則下列結(jié)論正確的有幾個(gè)(

為等邊三角形

,則

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(定義[a,b,c]為函數(shù)的特征數(shù),下面給出特征數(shù)為 [2m,1-m,-1-m]的函數(shù)的一些結(jié)論:

當(dāng)m=-3時(shí),函數(shù)圖象的頂點(diǎn)坐標(biāo)是(,;

當(dāng)m>0時(shí),函數(shù)圖象截x軸所得的線段長(zhǎng)度大于;

當(dāng)m<0時(shí),函數(shù)在時(shí),y隨x的增大而減小;

當(dāng)m≠0時(shí),函數(shù)圖象經(jīng)過x軸上一個(gè)定點(diǎn).

其中正確的結(jié)論有________ .(只需填寫序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為對(duì)稱中心,把點(diǎn)A(3,4)逆時(shí)針旋轉(zhuǎn)90°,得到點(diǎn)B,則點(diǎn)B的坐標(biāo)為(

A. (4,-3) B. (-4,3) C. (-3,4) D. (-3,-4)

查看答案和解析>>

同步練習(xí)冊(cè)答案