【題目】請將寬為3cm、長為ncm的長方形(n為正整數(shù))分割成若干小正方形,要求小正方形的邊長是正整數(shù)且個數(shù)最少.例如,當n=5cm時,此長方形可分割成如右圖的4個小正方形.
請回答下列問題:
(1)n=16時,可分割成幾個小正方形?
(2)當長方形被分割成20個小正方形時,求n所有可能的值;
(3)一般地,n>3時,此長方形可分割成多少個小正方形.
【答案】(1)可分割成8個小正方形;(2)n所有可能的值為60或52或53;(3)當n>3時,此長方形可分割成小正方形為:當n=3k時,有k個小正方形;當n═3k+1時,有(k+3)個小正方形;當n=3k+2時,有(k+3)個小正方形.
【解析】
根據(jù)題意,繼續(xù)畫圖分析并總結(jié)規(guī)律,然后再解決下列問題即可.
(1)根據(jù)以上結(jié)論即可求解;
(2)根據(jù)以上結(jié)論即可求解;
(3)根據(jù)總結(jié)規(guī)律整理到一起即可.
解:若n=4=3×1+1時,如下圖所示,此時共有4=(1+3)個小正方形
若n=7=3×2+1時,如下圖所示,此時共有5=(2+3)個小正方形
由上可知:當n等于3的k倍加1時,小正方形的個數(shù)為(k+3)個,即當n═3k+1時,有(k+3)個小正方形;
若n=5=3×1+2時,如下圖所示,此時共有4=(1+3)個小正方形
若n=8=3×2+2時,如下圖所示,此時共有5=(2+3)個小正方形
由上可知: 當n等于3的k倍加2時,小正方形的個數(shù)為(k+3)個,即當 n=3k+2時,有(k+3)個小正方形;
若n=6=3×2時,如下圖所示,此時共有2個小正方形
若n=9=3×3時,如下圖所示,此時共有3個小正方形
由上可知: 當n等于3的k倍時,小正方形的個數(shù)為k個,即 n=3k時,有k個小正方形;
(1)n=16=3×5+1時,可分割成5+3=8個小正方形;
(2)當長方形被分割成20個小正方形時,
若n=3k時,此時k=20,代入解得:n=60;
若n═3k+1時,此時k+3=20,解得k=17,代入解得:n═52;
若n=3k+2時,此時k+3=20,解得k=17,代入解得:n═53.
綜上所述:n所有可能的值為60或52或53;
(3)由上可知:當n>3時,此長方形可分割成小正方形為:
當n=3k時,有k個小正方形;
當n═3k+1時,有(k+3)個小正方形;
當n=3k+2時,有(k+3)個小正方形.
科目:初中數(shù)學 來源: 題型:
【題目】關(guān)于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個不等實根.
(1)求實數(shù)k的取值范圍.
(2)若方程兩實根滿足|x1|+|x2|=x1·x2,求k的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,BE=FC,CF=2FD,AE、BF交于點G,連接AF,給出下列結(jié)論:①AE⊥BF; ②AE=BF; ③BG=GE; ④S四邊形CEGF=S△ABG,其中正確的個數(shù)為( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,⊙O的直徑AB和弦CD相交于點E,且點B是劣弧DF的中點.
(1)求證:△EBD≌△EBF;
(2)已知AE=1,EB=5,∠DEB=30°,求CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,ABCD中,E、F分別是邊AB、CD的中點.
(1)求證:四邊形EBFD是平行四邊形;
(2)若AD=AE=2,∠A=60°,求四邊形EBFD的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ACB中,∠C=90°,點D在AC上,∠CBD=∠A,過A、D兩點的圓的圓心O在AB上.
(1)判斷BD所在直線與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若AE=4,∠A=30°,求圖中由BD、BE、弧DE圍成陰影部分面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與軸交于A,B兩點,與軸交于點C.
(1)請求出拋物線頂點M的坐標(用含k的代數(shù)式表示)以及A,B兩點的坐標.
(2)試探究△BCM與△ABC的面積比值是否不變,若不變,試求出這個比值;若改變,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,點F是邊BC的中點,連接AF并延長交DC的延長線于點E,連接AC、BE.
(1)求證:AB=CE;
(2)若,則四邊形ABEC是什么特殊四邊形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有時我們可以看到這樣的轉(zhuǎn)盤游戲:如圖所示,你只要出1元錢就可以隨意地轉(zhuǎn)動轉(zhuǎn)盤,轉(zhuǎn)盤停止時指針落在哪個區(qū)域,你就按照這個區(qū)域所示的數(shù)字相應(yīng)地順時針跳過幾格,然后按照下圖所示的說明確定你的資金是多少.例如,當指針指向 “2”區(qū)域時候,你就向前跳過兩個格到“5”,按獎金說明,“5”所示的資金為0.2元,你就可以得0.2元.請問這個游戲公平嗎?能否用你所學的知識揭示其中的秘密?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com