【題目】如圖,ACBECD都是等腰直角三角形,ACB=∠ECD=90°DAB邊上一點(diǎn).

求證:(1)△ACE≌△BCD;(2

【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.

【解析】

1)本題要判定△ACE≌△BCD,已知△ACB和△ECD都是等腰直角三角形,∠ACB=ECD=90°,則DC=EC,AC=BC,∠ACB=ECD,又因?yàn)閮山怯幸粋(gè)公共的角∠ACD,所以∠BCD=ACE,根據(jù)SAS得出△ACE≌△BCD

2)由(1)的論證結(jié)果得出∠DAE=90°,AE=DB,從而求出AD2+DB2=DE2

1)∵∠ACB=ECD=90°,∴∠ACD+BCD=ACD+ACE,即∠BCD=ACE

BC=AC,DC=EC,∴△ACE≌△BCD

2)∵△ACB是等腰直角三角形,∴∠B=BAC=45°.

∵△ACE≌△BCD,∴∠B=CAE=45°,AE=BD,∴∠DAE=CAE+BAC=45°+45°=90°,∴AD2+AE2=DE2,∴AD2+DB2=DE2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年我市體育中考總分60分,其中男生1000米跑為必選項(xiàng)目,再在立定跳遠(yuǎn)、跳繩、實(shí)心球擲遠(yuǎn)、籃球運(yùn)球和足球運(yùn)球中選擇兩項(xiàng);女生800米跑為必選項(xiàng)目,再在立定跳遠(yuǎn)、跳繩、仰臥起坐、籃球運(yùn)球和足球運(yùn)球中選擇兩項(xiàng)某校對(duì)得分超過(guò)40分的20位學(xué)生的成績(jī)m進(jìn)行統(tǒng)計(jì),結(jié)果如頻數(shù)分布表所示:

a的值;

若用扇形圖來(lái)描述,求分?jǐn)?shù)在內(nèi)所對(duì)應(yīng)的扇形圖的圓心角的大小;

若男生小明在剛開(kāi)始訓(xùn)練時(shí)在選考項(xiàng)目隨機(jī)選擇兩項(xiàng)進(jìn)行訓(xùn)練,試用列舉法求小明選擇跳繩籃球運(yùn)球的概率提示:可以用字母表示各個(gè)項(xiàng)目

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,△ABE和△CDF為直角三角形,∠AEB=CFD=90°,AE=CF=5,BE=DF=12,則EF的長(zhǎng)是( )

A. 7 B. 8 C. 7 D. 7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,,,,,則線段CD的長(zhǎng)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知AB,CD都是的直徑,連接DB,過(guò)點(diǎn)C的切線交DB的延長(zhǎng)線于點(diǎn)E.

如圖1,求證:;

如圖2,過(guò)點(diǎn)AEC的延長(zhǎng)線于點(diǎn)F,過(guò)點(diǎn)D,垂足為點(diǎn)G,求證:;

如圖3,在的條件下,當(dāng)時(shí),在外取一點(diǎn)H,連接CH、DH分別交于點(diǎn)M、N,且,點(diǎn)PHD的延長(zhǎng)線上,連接PO并延長(zhǎng)交CM于點(diǎn)Q,若,,求線段HM的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)在等邊的邊上,,射線于點(diǎn),點(diǎn)是射線上一動(dòng)點(diǎn),點(diǎn)是線段上一動(dòng)點(diǎn),當(dāng)的值最小時(shí),,則( )

A. 14B. 13C. 12D. 10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:ABC是邊長(zhǎng)為3的等邊三角形,BC為底邊作一個(gè)頂角為120等腰BDC.點(diǎn)M、點(diǎn)N分別是AB邊與AC邊上的點(diǎn),并且滿足∠MDN=60

1)如圖1,當(dāng)點(diǎn)DABC外部時(shí),求證:BM+CN=MN

2)當(dāng)點(diǎn)DABC內(nèi)部時(shí),其它條件不變,請(qǐng)?jiān)趫D2中補(bǔ)全圖形,并直接寫(xiě)出AMN的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD的頂點(diǎn)A,Bx軸上,點(diǎn)A在點(diǎn)B的左側(cè),點(diǎn)Dy軸的正半軸上,BAD=60°,點(diǎn)A的坐標(biāo)為(-2,0).

(1)求線段AD所在直線的表達(dá)式;

(2)動(dòng)點(diǎn)P從點(diǎn)A出發(fā)以每秒1個(gè)單位長(zhǎng)度的速度,按照A→D→C→B→A的順序在菱形的邊上勻速運(yùn)動(dòng)一周,設(shè)運(yùn)動(dòng)時(shí)間為tt為何值時(shí),以點(diǎn)P為圓心、以1為半徑的圓與對(duì)角線AC相切?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司生產(chǎn)的一種健身產(chǎn)品在市場(chǎng)上受到普遍歡迎,每年可在國(guó)內(nèi)、國(guó)外市場(chǎng)上全部售完,該公司的年產(chǎn)量為6千件,若在國(guó)內(nèi)市場(chǎng)銷(xiāo)售,平均每件產(chǎn)品的利潤(rùn)(元)與國(guó)內(nèi)銷(xiāo)售數(shù)量(千件)的關(guān)系為:若在國(guó)外銷(xiāo)售,平均每件產(chǎn)品的利潤(rùn)(元)與國(guó)外的銷(xiāo)售數(shù)量t(千件)的關(guān)系為:

1)用的代數(shù)式表示t為:t= ;當(dāng)0≤4時(shí),的函數(shù)關(guān)系式為:= ;當(dāng)4≤ 時(shí),=100;

2)求每年該公司銷(xiāo)售這種健身產(chǎn)品的總利潤(rùn)W(千元)與國(guó)內(nèi)的銷(xiāo)售數(shù)量(千件)的函數(shù)關(guān)系式,并指出的取值范圍;

3)該公司每年國(guó)內(nèi)、國(guó)外的銷(xiāo)量各為多少時(shí),可使公司每年的總利潤(rùn)最大?最大值為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案