【題目】如圖,已知兩地相距6千米,甲騎自行車從地出發(fā)前往,同時乙從地出發(fā)步行前往.

(1)已知甲的速度為16千米/小時,乙的速度為4千米/小時,求兩人出發(fā)幾小時后甲追上乙;

(2)甲追上乙后,兩人都提高了速度,但甲比乙每小時仍然多行12千米,甲到達(dá)地后立即返回,兩人在兩地的中點處相遇,此時離甲追上乙又經(jīng)過了2小時.兩地相距多少千米.

【答案】(1)兩人出發(fā)小時后甲追上乙;(2)兩地相距30千米.

【解析】

(1)設(shè)兩人出發(fā)t小時后甲追上乙,根據(jù)題意就有16t4t6,解方程即可求解;

(2)可設(shè)速度提高了a千米/小時,BC段長度為x千米,兩人在B、C兩地的中點處相遇,則甲比乙多走的路程為BC段,于是可得方程2(16+a)2(4+a)x,解方程即可得BC段,于是可求A、C兩地距離.

(1)設(shè)兩人出發(fā)t小時后甲追上乙,根據(jù)題意得

16t4t6

t,

答:兩人出發(fā)小時后甲追上乙;

(2)設(shè)兩個人的速度提高了a千米/小時,BC段長度為x千米,根據(jù)題意有

2(16+a)2(4+a)x,

x24,

BC段距離為24千米,

ACAB+BC6+2430,

答:AC兩地相距30千米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】a、bc為△ABC的三邊。

(1)判斷代數(shù)式a2abc+b的值與0的大小關(guān)系,并說明理由;

(2)滿足a+b+c=ab+ac+bc,試判斷△ABC的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一架梯子的長度為25米,斜靠在墻上,梯子低部離墻底端為7米.

1)這個梯子頂端離地面有   米;

2)如果梯子的頂端下滑了4米,那么梯子的底部在水平方向滑動了幾米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點DE分別是等邊三角形ABC的邊BC、AC上的點,連接ADBE交于點O,且ABD≌△BCE

1)若AB=3,AE=2,則BD=

2)若∠CBE=15°,則∠AOE= ;

3)若∠BAD=a,猜想∠AOE的度數(shù),并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1所示的三棱柱,高為,底面是一個邊長為的等邊三角形.

(1)這個三棱柱有 條棱, 個面;

(2)2方框中的圖形是該三棱柱的表面展開圖的一部分,請將它補(bǔ)全;

(3)要將該三棱柱的表面沿某些棱剪開,展開成一個平面圖形,需剪開 條棱,需剪開棱的棱長的和的最大值為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】8分)某酒廠每天生產(chǎn)A,B兩種品牌的白酒共600瓶,A,B兩種品牌的白酒每瓶的成本和利潤如下表:設(shè)每天生產(chǎn)A種品牌白酒x瓶,每天獲利y元.

1)請寫出y關(guān)于x的函數(shù)關(guān)系式;

2)如果該酒廠每天至少投入成本26400元,那么每天至少獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,將三角板放在正方形ABCD上,使三角板的直角頂點E與正方形ABCD的頂點A重合.三角板的一邊交CD于點F,另一邊交CB的延長線于點G.

(1)求證:EF=EG;

(2)如圖2,移動三角板,使頂點E始終在正方形ABCD的對角線AC上,其他條件不變,(1)中的結(jié)論是否仍然成立?若成立,請給予證明;若不成立,請說明理由;

(3)如圖3,將(2)中的“正方形ABCD”改為“矩形ABCD”,且使三角板的一邊經(jīng)過點B,其他條件不變,若AB=a,BC=b,請直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某造紙廠為了保護(hù)環(huán)境,準(zhǔn)備購買A,B兩種型號的污水處理設(shè)備共6臺,用于同時治理不同成分的污水,若購買A2臺,B3臺需54萬元,購買A4臺、B2臺需68萬元.

1)求出A型、B型污水處理設(shè)備的單價;

2)經(jīng)核實,一臺A型設(shè)備一個月可處理污水220噸,一臺B型設(shè)備一個月可處理污水180噸,如果該企業(yè)每月的污水處理量不低于1150噸,問共有幾種購買方案?請你為該企業(yè)設(shè)計一種最省錢的購買方案并求此時的購買費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小亮和小芳都想?yún)⒓訉W(xué)校杜團(tuán)組織的暑假實踐活動,但只有一個名額,小亮提議用如下的辦法決定誰去等加活動:將一個轉(zhuǎn)盤9等分,分別標(biāo)上1至9九個號碼,隨意轉(zhuǎn)動轉(zhuǎn)盤,

若轉(zhuǎn)到2的倍數(shù),小亮去參加活動;轉(zhuǎn)到3的倍數(shù),小芳去參加活動;轉(zhuǎn)到其它號碼則重新特動轉(zhuǎn)盤.

(1)轉(zhuǎn)盤轉(zhuǎn)到2的倍數(shù)的概率是多少?

(2)你認(rèn)為這個游戲公平嗎?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案