【題目】如圖,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,連結AE、BF.
求證:(1)AE=BF;(2)AE⊥BF.
【答案】見解析
【解析】
(1)可以把要證明相等的線段AE,CF放到△AEO,△BFO中考慮全等的條件,由兩個等腰直角三角形得AO=BO,OE=OF,再找夾角相等,這兩個夾角都是直角減去∠BOE的結果,所以相等,由此可以證明△AEO≌△BFO;
(2)由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90°,由此可以證明AE⊥BF
解:(1)證明:在△AEO與△BFO中,
∵Rt△OAB與Rt△EOF等腰直角三角形,
∴AO=OB,OE=OF,∠AOE=90°-∠BOE=∠BOF,
∴△AEO≌△BFO,
∴AE=BF;
( 2)延長AE交BF于D,交OB于C,則∠BCD=∠ACO
由(1)知:∠OAC=∠OBF,
∴∠BDA=∠AOB=90°,
∴AE⊥BF.
科目:初中數學 來源: 題型:
【題目】正方形ABCD的邊AB在直線MN上,O是AC、BD的交點,過O作OE⊥MN于點E.
(1)如圖1,線段AB與OE之間的數量關系為 .(請直接填結論)
(2)保證點A始終在直線MN上,正方形ABCD繞點A旋轉(0<<90°),過點B作BF⊥MN于點F.
① 如圖2,當點O、B兩點均在直線MN右側時,試猜想線段AF、BF與OE之間存在怎樣的數量關系?請說明理由.
② 如圖3,當點O、B兩點分別在直線MN兩側時,此時①中結論是否依然成立呢?若成立,請直接寫出結論;若不成立,請寫出變化后的結論并證明.
③ 當正方形ABCD繞點A旋轉到如圖4的位置時,線段AF、BF與OE之間的數量關系為 .(請直接填結論)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,AD⊥BC,垂足為D.給出下列四個結論:①sinα=sinB;②sinβ=sinC;③sinB=cosC;④sinα=cosβ.其中正確的結論有_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在A、B 兩地之間要修一條筆直的公路,從A地測得公路走向是北偏東48°,A,B兩地同時開工,若干天后公路準確接通,若公路AB長8千米,另一條公路BC長是6千米,且BC的走向是北偏西42°,則A地到公路BC的距離是( 。
A. 6千米 B. 8千米 C. 10千米 D. 14千米
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=BD.點E、F分別在AB、AD上,且AE=DF.連接BF與DE相交于點G,連接CG與BD相交于點H.下列結論:①△AED≌△DFB; ②S四邊形BCDG=CG2;③DE=CG;④若AF=2DF,則BG=6GF.其中正確的結論_____________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】等腰三角形中,,于點D.
(1)如圖1,當∠C=3∠BAD,求∠C的度數.
(2)如圖2,EF垂直平分AB,交于點F,連結DF,當時,求證:DF=DC.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,有一個△ABC,頂點,,.
(1)畫出△ABC 關于 y 軸的對稱圖形(不寫畫法)
點A 關于 x 軸對稱的點坐標為_____________;
點 B 關于 y 軸對稱的點坐標為_____________;
點 C 關于原點對稱的點坐標為_____________;
(2)若網格上的每個小正方形的邊長為 1,求△ABC 的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】若一個三位數滿足條件:其百位數字與十位數字之和為個位數字,則稱這樣的三位數為“吉祥數”,將“吉祥數”m的百位數字與個位數字交換位置,交換后所得的新數叫做m的“如意數”.如156是一個“吉祥數”,651是156的“如意數”.在吉祥數中當|x﹣y|=0或1時,稱其為“和諧吉祥數”.
(1)個位數字為6的“和諧吉祥數”是 ,個位數字為9的“和諧吉祥數”是 .
(2)證明:任意一個“吉祥數”與其“如意數”之差都能被11整除;
(3)已知m為“吉祥數”,n是m的“如意數”,若m與n的和能被8整除,求m.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com