【題目】如圖,拋物線與軸交于點(diǎn)和點(diǎn),與軸交于點(diǎn),點(diǎn)是拋物線的頂點(diǎn),過點(diǎn)作軸的垂線,垂足為,連接.
(1)求此拋物線的解析式;
(2)點(diǎn)是拋物線上的動點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為.
①當(dāng)時,求點(diǎn)的坐標(biāo);
②過點(diǎn)作軸,與拋物線交于點(diǎn),為軸上一點(diǎn),連接,,將沿著翻折,得,若四邊形恰好為正方形,直接寫出的值.
【答案】(1);(2)①點(diǎn)坐標(biāo)為或;②或
【解析】
(1)利用待定系數(shù)法即可解決問題;
(2)①根據(jù),,由,構(gòu)建方程即可解決問題;②因?yàn)辄c(diǎn)M、N關(guān)于拋物線的對稱軸對稱,四邊形MPNQ是正方形,推出點(diǎn)P是拋物線的對稱軸與x軸的交點(diǎn),即,易證,即,解方程即可解決問題.
解:(1)∵,在上
∴
解得
∴
(2)①∵點(diǎn)為拋物線的頂點(diǎn),軸
∴,,
∴
如圖1過點(diǎn)作軸交軸于點(diǎn),則.
∵,
∴,
∴
∵∴
解得,(舍),,(舍)
綜上,滿足條件的點(diǎn)坐標(biāo)為或
②的值為或或或
為正方形,軸,,關(guān)于對稱軸對稱
∴為等腰,
∴為等腰,
∴
或
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一天,小戰(zhàn)和同學(xué)們一起到操場測量學(xué)校旗桿高度,他們首先在斜坡底部C地測得旗桿頂部A的仰角為45°,然后上到斜坡頂部D點(diǎn)處再測得旗桿頂部A點(diǎn)仰角為37°(身高忽略不計).已知斜坡CD坡度i=1:2.4,坡長為2.6米,旗桿AB所在旗臺高度EF為1.4米,旗臺底部、臺階底部、操場在同一水平面上.則請問旗桿自身高度AB為( 。┟祝
(參考數(shù)據(jù):sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)
A.10.2B.9.8C.11.2D.10.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以AB為直徑的半圓O交AC于點(diǎn)D,且點(diǎn)D為AC的中點(diǎn),DE⊥BC于點(diǎn)E,AE交半圓O于點(diǎn)F,BF的延長線交DE于點(diǎn)G.
(1)求證:DE為半圓O的切線;
(2)若GE=1,BF=,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有邊長為a的正方形卡片①,邊長為b的正方形卡片②,兩鄰邊長分別為a,b的矩形卡片③若干張.
(1)請用2張卡片①,1張卡片②,3張卡片③拼成一個矩形,在方框中畫出這個矩形的草圖;
(2)請結(jié)合拼圖前后面積之間的關(guān)系寫出一個等式;
(3)小明想用類似方法解釋多項(xiàng)式乘法(a+3b)(2a+2b)的結(jié)果,那么需用卡片①______張,卡片②______張,卡片③______張.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)現(xiàn)有在校學(xué)生 1250 人,為了解本校學(xué)生的課余活動情況,采取隨機(jī)抽樣的方法從閱讀、運(yùn)動、娛樂、其它四個方面調(diào)查了若干名學(xué)生,并將調(diào)查的結(jié)果繪制了 如下兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答下列問題:
(1)本次調(diào)査共取了多少名學(xué)生?
(2)通過計算補(bǔ)全條形圖,并求出扇形統(tǒng)計圖中閱讀部分圓心角的度數(shù);
(3)請你估計該中學(xué)在課余時間參加閱讀和其他活動的學(xué)生一共有多少名
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,B,C,D為一直線上4個點(diǎn),BC=3,△BCE為等邊三角形,⊙O過A,D,E三點(diǎn),且∠AOD=120°,設(shè)AB=x,CD=y,則y與x的函數(shù)關(guān)系式是( 。
A.y=B.y=xC.y=3x+3D.y=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是⊙O的直徑,弦BD⊥AO于E,連接BC,過點(diǎn)O作OF⊥BC于F,若BD=8cm,AE=2cm,則OF的長度是( )
A. 3cm B. cm C. 2.5cm D. cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對實(shí)數(shù)a,b定義新運(yùn)算“”
例如:
(1)化簡_________.
(2)化簡_________.
(3)化簡.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),四邊形是正方形,作直線與正方形邊所在直線相交于
(1)若直線經(jīng)過點(diǎn),求的值;
(2)若直線平分正方形的面積,求的坐標(biāo);
(3)若的外心在其內(nèi)部,直接寫出的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com