【題目】閱讀材料:據(jù)說,我國著名數(shù)學(xué)家華羅庚在出國訪問途中,看到飛機上鄰座的乘客閱讀的雜志上有一道智力題:一個數(shù)是59319,希望求它的立方根.華羅庚脫口而出:39,鄰座的乘客十分驚奇,忙問計算的奧妙.
你知道華羅庚是怎樣迅速準(zhǔn)確地計算出來的嗎?他是按照下面的方法確定的:
由,,就能確定是2位數(shù).由59319的個位上的數(shù)是9,就能確定的個位上的數(shù)是9,如果劃去59319后面的三位319得到數(shù)59,而,,由此可確定的十位上的數(shù)是3,所以,.
(1)已知19683,110592都是整數(shù)的立方,按照上述方法,請直接寫出它們的立方根;
(2)是我們沒有學(xué)習(xí)過的四次方根,且它的結(jié)果也是一個整數(shù),請你根據(jù)材料的方法求出結(jié)果,并說明理由.
【答案】(1),;(2).
【解析】
(1)分別根據(jù)題中所給的分析方法先求出這兩個數(shù)的立方根都是兩位數(shù),然后再求出個位數(shù)和十位數(shù)即可;
(2)分別根據(jù)題中所給的分析方法先求出這個數(shù)的四次方根是兩位數(shù),然后再求出個位數(shù)和十位數(shù)即可,驗證后可得結(jié)果.
解:(1)由題意得:題中所給出數(shù)的立方根都是兩位數(shù),
∵19683的個位上的數(shù)是3,就能確定的個位上的數(shù)是7,19683去掉后3位得到19,
∵23<19<33,
∴的十位上的數(shù)是2,
∴;
∵110592的個位上的數(shù)是2,就能確定的個位上的數(shù)是8,110592去掉后3位得到110,
∵43<110<53,
∴的十位上的數(shù)是4,
∴;
(2)由,,就能確定是2位數(shù),由279841的個位上的數(shù)是1,就能確定的個位上的數(shù)是1或3,如果劃去279841后面的四位9841得到數(shù)27,而24<27<34,由此可確定的十位上的數(shù)是2,經(jīng)驗證,234=279841,
所以.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】南沙群島是我國固有領(lǐng)土,現(xiàn)在我南海漁民要在南沙某海島附近進行捕魚作業(yè),當(dāng)漁船航行至B處時,測得該島位于正北方向海里的C處,為了防止某國還巡警干擾,就請求我A處的魚監(jiān)船前往C處護航,已知C位于A處的北偏東45°方向上,A位于B的北偏西30°的方向上,求A、C之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算:
(1)(﹣3)+40+(﹣32)+(﹣8)
(2)12﹣(﹣18)+(﹣7)
(3)(+3)﹣(﹣5)+(﹣2)﹣(﹣32)
(4)81.26﹣293.8+8.74+111
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】張丘建,我國南北朝時期(約公元5世紀(jì))著名的數(shù)學(xué)家,著有《張丘建算經(jīng)》.一次宴會上,張丘建出了一道題:“現(xiàn)有一只鹿向西跑,當(dāng)獵人追至處時,與鹿所在的處還差36步(古代:1里=300步);鹿突然向北跑,此時騎馬的獵人就沿著追去,追了50步至處與鹿所在的位置處還差10步(點、、在同一直線上).如果此鹿不向北轉(zhuǎn),而繼續(xù)向西跑,獵人需要追多遠才能追上此鹿?”,已知單位時間內(nèi)鹿跑的路程和獵人騎馬追趕的路程的比值是定值,請解答這個問題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某海濱浴場東西走向的海岸線可以近似看作直線l(如圖).救生員甲在A處的瞭望臺上觀察海面情況,發(fā)現(xiàn)其正北方向的B處有人發(fā)出求救信號,他立即沿AB方向徑直前往救援,同時通知正在海岸線上巡邏的救生員乙.乙馬上從C處入海,徑直向B處游去.甲在乙入海10秒后趕到海岸線上的D處,再向B處游去.若CD=40米,B在C的北偏東35°方向,甲乙的游泳速度都是2米/秒.問誰先到達B處?請說明理由.
(參考數(shù)據(jù):sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某天早晨,小童從家跑步去體育場鍛煉,同時小鄭從體育場晨練結(jié)束回家,途中兩人相遇.小童跑到體育場后發(fā)現(xiàn)要下雨,立即按原路返回,遇到小鄭后兩人一起回到家(小童和小鄭始終在同一條筆直的公路上行走).如圖是兩人離家的距離y(米)與小童出發(fā)的時間x(分)之間的函數(shù)圖象.當(dāng)x=_______時,小童與小鄭相距600米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線l:y=2x+4交x軸于A,交y軸于B.
(1) 直接寫出直線l向右平移2個單位得到的直線l1的解析式_______;
(2) 直接寫出直線l關(guān)于y=-x對稱的直線l2的解析式_______;
(3) 點P在直線l上,若S△OAP=2S△OBP,求P點坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過邊長為2的等邊三角形ABC的頂點C作直線l⊥ BC,然后作△ABC關(guān)于直線l對稱的△A′B′C,P為線段A′C上一動點,連接AP,PB,則AP+PB的最小值是 ( )
A.4B.3C.2D.2+
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】蝸牛從某點O開始沿東西方向直線爬行,規(guī)定向東爬行的路程記為正數(shù),向西爬行的路程記為負(fù)數(shù).爬行的各段路程依次為(單位:厘米):.問:
(1)蝸牛最后是否回到出發(fā)點O?
(2)蝸牛離開出發(fā)點O最遠是多少厘米?
(3)在爬行過程中,如果每爬行1厘米獎勵一粒芝麻,則蝸牛可得到多少粒芝麻?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com