【題目】如圖,中,,點(diǎn)為中點(diǎn),連接,于,交于,連接,點(diǎn)為中點(diǎn),連接,以下結(jié)論:①;②;③;④平分。其中正確的結(jié)論的序號(hào)為___________。
【答案】③④
【解析】
作AP⊥AC交CE的延長(zhǎng)線于P,連接CH.構(gòu)造全等三角形,證明△CAP≌△BCG(ASA),△EAG≌△EAP(SAS),即可分步判斷①②③,利用四點(diǎn)共圓可以證明④正確.
解:如圖,作AP⊥AC交CE的延長(zhǎng)線于P,連接CH.
∵CE⊥BG,
∴∠CFB=∠ACB=90°,
∵∠ACE+∠BCE=90°,∠CBG+∠BCE=90°,
∴∠ACE=∠CBG,
∵BG是△ABC的中線,AB>BC,
∴∠ABG≠∠CBG,
∴∠ACE≠∠ABG,故①錯(cuò)誤,
∵∠ACP=∠CBG,AC=BC,∠CAP=∠BCG=90°,
∴△CAP≌△BCG(ASA),
∴CG=PA=AG,∠BGC=∠P,
∵AG=AP,∠EAG=∠EAP=45°,AE=AE,
∴△EAG≌△EAP(SAS),
∴∠AGE=∠P,
∴∠AGE=∠CGB,故③正確,
∵,
∴△ABC是等腰直角三角形,
∴AC=BC=10,
∴AG=CG=5,
∴,
∵ ,
∴,故②錯(cuò)誤,
∵CA=CB,∠ACB=90°,AH=HB,
∴∠BCH=∠ACH=45°,
∵∠CFB=∠CHB=90°,
∴C,F,H,B四點(diǎn)共圓,
∴∠HFB=∠BCH=45°,
∴∠EFH=∠HFB=45°,
∴FH平分∠BFE,故④正確,
綜上所述,正確的只有③④.
故答案為:③④
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,和的角平分線相交于點(diǎn),過(guò)點(diǎn)作交于,交于,過(guò)點(diǎn)作于.下列五個(gè)結(jié)論:其中正確的有( )
(1);(2);(3)點(diǎn)到各邊的距離都相等;(4)設(shè),若,則;(5).( )
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將1、、、按圖所示的方式排列,若規(guī)定(m,n)表示第m排從左到右第n個(gè)數(shù),則(4,2)與(21,2)表示的兩數(shù)的積是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A點(diǎn)的坐標(biāo)為(a,6),AB⊥x軸于點(diǎn)B,cos∠OAB═,反比例函數(shù)y=的圖象的一支分別交AO、AB于點(diǎn)C、D.延長(zhǎng)AO交反比例函數(shù)的圖象的另一支于點(diǎn)E.已知點(diǎn)D的縱坐標(biāo)為.
(1)求反比例函數(shù)的解析式;
(2)求直線EB的解析式;
(3)求S△OEB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一個(gè)圓柱形玻璃杯高,底面周長(zhǎng)為,有一只螞蟻在一側(cè)距下底的外側(cè)點(diǎn),與點(diǎn)正對(duì)的容器內(nèi)側(cè)距下底的點(diǎn)處有一飯粒,螞蟻想吃處的飯粒,要從杯子的外側(cè)爬到杯子的內(nèi)側(cè),杯子的厚度忽略不計(jì),則至少需要爬________________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,過(guò)邊長(zhǎng)為1的等邊△ABC的邊AB上一點(diǎn)P作PE⊥AC于點(diǎn)E,Q為BC延長(zhǎng)線上一點(diǎn),當(dāng)PA=CQ時(shí),連接PQ交AC于點(diǎn)D,則DE的長(zhǎng)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖△ABC中,∠BAC=90°,AB=AC=AD,AD交BC于點(diǎn)P,∠CAD=30°,AC=6,求:
(1)∠BDC的度數(shù),
(2)△ABD的周長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點(diǎn)A和點(diǎn)B(0,﹣1),拋物線y=x2+bx+c經(jīng)過(guò)點(diǎn)B,與直線l的另一個(gè)交點(diǎn)為C(4,n).
(1)求n的值和拋物線的解析式;
(2)點(diǎn)D在拋物線上,DE∥y軸交直線l于點(diǎn)E,點(diǎn)F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點(diǎn)D的橫坐標(biāo)為t(0<t<4),矩形DFEG的周長(zhǎng)為p,求p與t的函數(shù)關(guān)系式以及p的最大值;
(3)將△AOB繞平面內(nèi)某點(diǎn)M旋轉(zhuǎn)90°或180°,得到△A1O1B1,點(diǎn)A、O、B的對(duì)應(yīng)點(diǎn)分別是點(diǎn)A1、O1、B1.若△A1O1B1的兩個(gè)頂點(diǎn)恰好落在拋物線上,那么我們就稱(chēng)這樣的點(diǎn)為“落點(diǎn)”,請(qǐng)直接寫(xiě)出“落點(diǎn)”的個(gè)數(shù)和旋轉(zhuǎn)180°時(shí)點(diǎn)A1的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示.
(1)寫(xiě)出三角形③的頂點(diǎn)坐標(biāo).
(2)通過(guò)平移由三角形③能得到三角形④嗎?
(3)根據(jù)對(duì)稱(chēng)性由三角形③可得三角形①,②,它們的頂點(diǎn)坐標(biāo)各是什么?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com