【題目】如圖①,直線上依次有、、三點,若射線繞點沿順時針方向以每秒的速度旋轉(zhuǎn),同時射線繞點沿逆時針方向以每秒的速度旋轉(zhuǎn),如圖②,設(shè)旋轉(zhuǎn)時間為秒().
(1)__________度,__________度.(用含的代數(shù)式表示)
(2)在運動過程中,當等于時,求的值.
(3)在旋轉(zhuǎn)過程中是否存在這樣的,使得射線平分或 (,均為小于的角)?如果存在,直接寫出的值;如果不存在,請說明理由.
【答案】(1)度,度;(2)當等于時,t=20或40;(3)射線平分或時,t=18或36.
【解析】
(1)∠POA的度數(shù)等于OA旋轉(zhuǎn)速度乘以旋轉(zhuǎn)時間,∠QOB的度數(shù)等于OB旋轉(zhuǎn)速度乘以旋轉(zhuǎn)時間;
(2)分OA與OB相遇前,∠AOB=60°,和OA與OB相遇后,∠AOB=60°,兩種情況,列出關(guān)于t的等式,解出即可;
(3)分OB平分∠AOQ和OB平分∠AOP兩種情況,列出關(guān)于t的等式,解出即可.
(1)度,
度;
(2)①OA與OB相遇前,∠AOB=60°,
;
②OA與OB相遇后,∠AOB=60°,
,
綜上,當等于時,t=20或40;
(3)①OB平分∠AOQ時,
∠AOQ=2∠BOQ,
;
②OB平分∠AOP時,
∠AOP=2∠BOP,
,
綜上,射線平分或時,t=18或36.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點C是AB的中點,點D是BC的中點,現(xiàn)給出下列等式:①CD=AC-DB,②CD=AB,③CD=AD-BC,④BD=2AD-AB.其中正確的等式編號是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了推動陽光體育運動的廣泛開展,引導(dǎo)學(xué)生走向操場,積極參加體育鍛煉,學(xué)校準備購買一批運動鞋供學(xué)生借用,現(xiàn)從各年級隨機抽取了部分學(xué)生的鞋號,繪制了統(tǒng)計圖①和圖②,請根據(jù)相關(guān)信息,解答下列問題:
(1)本次接受隨機抽樣調(diào)查的學(xué)生人數(shù)為______,圖①中的值為_____;
(2)本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)為______,中位數(shù)為________;
(3)根據(jù)樣本數(shù)據(jù),若學(xué)校計劃購買200雙運動鞋,建議購買35號運動鞋多少雙?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是
A. “明天降雨的概率是80%”表示明天有80%的時間都在降雨
B. “拋一枚硬幣正面朝上的概率為”表示每拋2次就有一次正面朝上
C. “彩票中獎的概率為1%”表示買100張彩票肯定會中獎
D. “拋一枚正方體骰子,朝上的點數(shù)為2的概率為”表示隨著拋擲次數(shù)的增加,“拋出朝上的點數(shù)為2”這一事件發(fā)生的頻率穩(wěn)定在附近
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=10°,點P在OB上.以點P為圓心,OP為半徑畫弧,交OA于點P1(點P1與點O不重合),連接PP1;再以點P1為圓心,OP為半徑畫弧,交OB于點P2(點P2與點P不重合),連接P1 P2;再以點P2為圓心,OP為半徑畫弧,交OA于點P3(點P3與點P1不重合),連接P2 P3;……
請按照上面的要求繼續(xù)操作并探究:
∠P3 P2 P4=_____°;按照上面的要求一直畫下去,得到點Pn,若之后就不能再畫出符合要求點Pn+1了,則n=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面坐標系中,點、點分別在軸、軸的正半軸上,且,另有兩點和,、均大于;
(1)連接、,求證:;
(2)連接、、,若,,,求的度數(shù);
(3)若,在線段上有一點,且,,,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】北國超市銷售每臺進價分別為400元、350元的兩種型號的豆?jié){機.下表是近兩周的銷售情況:
銷售數(shù)量:
銷售時段 | 銷售數(shù)量 | 銷售收入 | |
種型號 | 種型號 | ||
第一周 | 3臺 | 5臺 | 3500元 |
第二周 | 4臺 | 10臺 | 6000元 |
(進價、售價均保持不變,利潤=銷售收入-進價)
(1)求兩種型號的豆?jié){機的銷售單價;
(2 )若第三周該超市采購這兩種型號的豆?jié){機共20臺, 并且B型號的臺數(shù)比A型號的臺數(shù)的2倍少1 ,如果這20臺豆?jié){機全部售出,求這周銷售的利潤;
(3)若恰好用8000元采購這兩種型號的豆?jié){機,問有哪幾種進貨方案? ( 要求兩種型號都要采購)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與反比例函數(shù)的圖象交于、兩點,與軸交于點,已知點的坐標為.
(1)求反比例函數(shù)的解析式;
(2)若點是反比例函數(shù)圖象上一點,過點作軸于點,延長交直線于點,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【探索新知】:如圖1,射線OC在∠AOB的內(nèi)部,圖中共有3個角:∠AOB,∠AOC和∠BOC,若其中有一個角的度數(shù)是另一個角度數(shù)的兩倍,則稱射線OC是∠AOB的“巧分線”.
(1)一個角的平分線 這個角的“巧分線”;(填“是”或“不是”)
(2)如圖2,若∠MPN=α,且射線PQ是∠MPN的“巧分線”,則∠MPQ= ;(用含α的代數(shù)式表示出所有可能的結(jié)果)
【深入研究】:如圖2,若∠MPN=60°,且射線PQ繞點P從PN位置開始,以每秒10°的速度逆時針旋轉(zhuǎn),當PQ與PN成180°時停止旋轉(zhuǎn),旋轉(zhuǎn)的時間為t秒.
(3)當t為何值時,射線PM是∠QPN的“巧分線”;
(4)若射線PM同時繞點P以每秒5°的速度逆時針旋轉(zhuǎn),并與PQ同時停止,請直接寫出當射線PQ是∠MPN的“巧分線”時t的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com