【題目】若的值是整數(shù),則自然數(shù)的值為_____.
【答案】17或16或8或1
【解析】
先根據(jù)二次根式的定義求出x的取值范圍,再根據(jù)的值是整數(shù)這一條件對(duì)的值進(jìn)行討論即可.
由題意得:17-x≥0,解得,x≤17,
當(dāng)x=0時(shí),原式=,不合題意;
當(dāng)x=1時(shí),原式==4,符合題意;
當(dāng)x=2時(shí),原式=,不合題意;
當(dāng)x=3時(shí),原式=,不合題意;
當(dāng)x=4時(shí),原式=,不合題意;
當(dāng)x=5時(shí),原式=,不合題意;
當(dāng)x=6時(shí),原式=,不合題意;
當(dāng)x=7時(shí),原式=,不合題意;
當(dāng)x=8時(shí),原式=,符合題意;
當(dāng)x=9時(shí),原式=,不合題意;
當(dāng)x=10時(shí),原式=,不合題意;
當(dāng)x=11時(shí),原式=,不合題意;
當(dāng)x=12時(shí),原式=,不合題意;
當(dāng)x=13時(shí),原式=;符合題意;
當(dāng)x=14時(shí),原式=,不合題意;
當(dāng)x=15時(shí),原式=,不合題意;
當(dāng)x=16時(shí),原式=1;
當(dāng)x=17時(shí),原式=0.
綜上所述,x=1、8、13、16或17.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知拋物線y=-x2+bx+c與x軸交于點(diǎn)A(-1,0)、B(3,0),與y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)點(diǎn)D的坐標(biāo)為(1,0),點(diǎn)P為第一象限內(nèi)拋物線上的一點(diǎn),求四邊形BDCP面積的最大值;
(3)如圖②,動(dòng)點(diǎn)M從點(diǎn)O出發(fā),以每秒2個(gè)單位長度的速度向點(diǎn)B運(yùn)動(dòng),到達(dá)點(diǎn)B時(shí)停止運(yùn)動(dòng),且不與點(diǎn)O、B重合.設(shè)運(yùn)動(dòng)時(shí)間為t秒,過點(diǎn)M作x軸的垂線交拋物線于點(diǎn)N,交線段BC于點(diǎn)Q,連接OQ,是否存在t值,使得△BOQ為等腰三角形?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+2(m﹣1)x+m2﹣3=0有兩個(gè)不相等的實(shí)數(shù)根.
(1)求m的取值范圍;
(2)若m為非負(fù)整數(shù),且該方程的根都是無理數(shù),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象分別與反比例函數(shù)的圖象在第一象限交于點(diǎn)A(8,6),與y軸的負(fù)半軸交于點(diǎn)B,且OA=OB.
(1)求函數(shù)y=kx+b和的表達(dá)式;
(2)已知點(diǎn)C(0,10),試在該一次函數(shù)圖象上確定一點(diǎn)M,使得MB=MC。求此時(shí)點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了了解九年級(jí)學(xué)生“一分鐘跳繩”體育測試項(xiàng)目情況,隨機(jī)抽取了九年級(jí)部分學(xué)生組成測試小組進(jìn)行調(diào)查測試,并對(duì)這部分學(xué)生“一分鐘跳繩”測試的成績按A,B,C,D四個(gè)等級(jí)進(jìn)行了統(tǒng)計(jì),并繪制了如下兩幅不完整的統(tǒng)計(jì)圖.
(1)本次隨機(jī)調(diào)查抽樣的樣本容量為 ;
(2)D等級(jí)所對(duì)扇形的圓心角為 °,并將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)如果該學(xué)校九年級(jí)共有400名學(xué)生,那么根據(jù)以上樣本統(tǒng)計(jì)全校九年級(jí)“一分鐘跳繩”測試成績?yōu)?/span>A等級(jí)的學(xué)生有 人;
(4)現(xiàn)有測試成績?yōu)?/span>A等級(jí),且表現(xiàn)比較突出的兩男兩女共4名學(xué)生,計(jì)劃從這4名學(xué)生中隨機(jī)抽取2名同學(xué)作平時(shí)訓(xùn)練經(jīng)驗(yàn)交流,請(qǐng)用列表法或畫樹狀圖的方法,求所選兩位同學(xué)恰好是1男1女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知的直徑AB垂直弦CD于點(diǎn)E,過C點(diǎn)作CG∥AD交AB延長線于點(diǎn)G,連結(jié)CO并延長交AD于點(diǎn)F,且CF⊥AD.
(1)求證:CG是⊙O的切線;
(2)若AB=4,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,二次函數(shù)y=mx2-(2m+1)x+m-5的圖象與x軸有兩個(gè)公共點(diǎn).
()求m的取值范圍;
()若m取滿足條件的最小的整數(shù),
①寫出這個(gè)二次函數(shù)的表達(dá)式;
②當(dāng)n≤x≤1時(shí),函數(shù)值y的取值范圍是-6≤y≤4-n,求n的值;
③將此二次函數(shù)圖象平移,使平移后的圖象經(jīng)過原點(diǎn)O.設(shè)平移后的圖象對(duì)應(yīng)的函數(shù)表達(dá)式為y=a(x-h(huán))2 +k,當(dāng)x<2時(shí),y隨x的增大而減小,求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正的邊長為2,頂點(diǎn)、在半徑為的圓上,頂點(diǎn)在圓內(nèi),將正繞點(diǎn)逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)第一次落在圓上時(shí),則點(diǎn)運(yùn)動(dòng)的路線長為__________(結(jié)果保留);若點(diǎn)落在圓上記做第1次旋轉(zhuǎn),將繞點(diǎn)逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)第一次落在圓上記做第2次旋轉(zhuǎn),再繞將逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)第一次落在圓上,記做第3次旋轉(zhuǎn)……,若此旋轉(zhuǎn)下去,當(dāng)完成第2018次旋轉(zhuǎn)時(shí),邊共回到原來位置__________次.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)開展黃梅戲演唱比賽,組委會(huì)將本次比賽的成績(單位:分)進(jìn)行整理,并繪制成如下頻數(shù)分布表和頻數(shù)分布直方圖(不完整).
成績 | 頻數(shù) | 頻率 |
| 2 | 0.04 |
| 0.16 | |
| 20 | 0.40 |
| 16 | 0.32 |
| 4 |
|
合計(jì) | 50 | 1 |
請(qǐng)你根據(jù)圖表提供的信息,解答下列問題:
(1)求出,的值并補(bǔ)全頻數(shù)分布直方圖.
(2)將此次比賽成績分為三組:;;若按照這樣的分組方式繪制扇形統(tǒng)計(jì)圖,則其中組所在扇形的圓心角的度數(shù)是多少?
(3)學(xué)校準(zhǔn)備從不低于90分的參賽選手中任選2人參加市級(jí)黃梅戲演唱比賽,求都取得了95分的小欣和小怡同時(shí)被選上的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com