【題目】某網(wǎng)商經(jīng)銷一種暢銷玩具,每件進(jìn)價(jià)為18元,每月銷量y(件)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系如圖中線段AB所示.
(1)當(dāng)銷售單價(jià)為多少元時(shí),該網(wǎng)商每月經(jīng)銷這種玩具能夠獲得最大銷售利潤(rùn)?最大銷售利潤(rùn)是多少?(銷售利潤(rùn)=售價(jià)﹣進(jìn)價(jià))
(2)如果該網(wǎng)商要獲得每月不低于3500元的銷售利潤(rùn).那么至少要準(zhǔn)備多少資金進(jìn)貨這種玩具?
【答案】(1) 當(dāng)銷售單價(jià)為34元時(shí),該網(wǎng)商每月經(jīng)銷這種玩具能夠獲得最大銷售利潤(rùn),最大銷售利潤(rùn)是5120元;(2) 該網(wǎng)商要獲得每月不低于3500元的銷售利潤(rùn).那么至少要準(zhǔn)備2520元進(jìn)貨這種玩具.
【解析】
(1)先用待定系數(shù)法求出AB段對(duì)應(yīng)的函數(shù)解析式,然后根據(jù) “每月的利潤(rùn)等于每件產(chǎn)品的利潤(rùn)乘以每月銷售量”即可計(jì)算出每件產(chǎn)品的利潤(rùn);
(2)先根據(jù)該網(wǎng)商要獲得每月不低于3500元的銷售利潤(rùn),列不等式求出x的取值范圍,設(shè)準(zhǔn)備資金為m元,列出一次函數(shù)關(guān)系式求解即可.
解:(1)設(shè)AB段對(duì)應(yīng)的函數(shù)解析式為y=kx+b,
,得,
即AB段對(duì)應(yīng)的函數(shù)解析式為y=﹣20x+1000,
設(shè)銷售利潤(rùn)為w元,
w=(x﹣18)(﹣20x+1000)=﹣20x2+1360x﹣18000=﹣20(x﹣34)2+5120,∵20≤x≤50,
∴當(dāng)x=34時(shí),w取得最大值,此時(shí)w=5120,
答:當(dāng)銷售單價(jià)為34元時(shí),該網(wǎng)商每月經(jīng)銷這種玩具能夠獲得最大銷售利潤(rùn),最大銷售利潤(rùn)是5120元;
(2)∵該網(wǎng)商要獲得每月不低于3500元的銷售利潤(rùn),
∴﹣20(x﹣34)2+5120≥3500,
解得,25≤x≤43,
設(shè)準(zhǔn)備資金為m元,
則m=18(﹣20x+1000)=﹣360x+18000,
∴當(dāng)x=43時(shí),m取的最小是,此時(shí)m=2520,
答:該網(wǎng)商要獲得每月不低于3500元的銷售利潤(rùn).那么至少要準(zhǔn)備2520元進(jìn)貨這種玩具.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O為坐標(biāo)原點(diǎn),點(diǎn)B在x軸的正半軸上,四邊形OACB是平行四邊形,OA =10,sin∠AOB =,反比例函數(shù)y =kx-1(k>0)在第一象限內(nèi)的圖象經(jīng)過(guò)點(diǎn)A,與BC交于點(diǎn)F.
(1)求反比例函數(shù)的表達(dá)式;
(2)若點(diǎn)F為BC的中點(diǎn),求△OBF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,≌,≌,B,E,C在一條直線上下列結(jié)論:是的平分線;;;線段DE是的中線;其中正確的有 ()個(gè).
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)銷售一批名牌襯衫,平均每天可售出20件,每件盈利45元,為了擴(kuò)大銷售、增加盈利盡快減少庫(kù)存,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價(jià)1元,商場(chǎng)平均每天可多售出4件,若商場(chǎng)平均每天盈利2100元,每件襯衫應(yīng)降價(jià)多少元?請(qǐng)完成下列問(wèn)題:
(1)未降價(jià)之前,某商場(chǎng)襯衫的總盈利為 元.
(2)降價(jià)后,設(shè)某商場(chǎng)每件襯衫應(yīng)降價(jià)x元,則每件襯衫盈利 元,平均每天可售出 件(用含x的代數(shù)式進(jìn)行表示)
(3)請(qǐng)列出方程,求出x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有10個(gè)數(shù)據(jù)x1,x2,…x10,已知它們的和為2018,當(dāng)代數(shù)式(x﹣x1)2+(x﹣x2)2+…+(x﹣x10)2取得最小值時(shí),x的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P、Q分別是邊長(zhǎng)為4cm的等邊△ABC邊AB、BC上的動(dòng)點(diǎn)(端點(diǎn)除外),點(diǎn)P從頂點(diǎn)A,點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且它們的速度都為1cm/s,連接AQ、CP交于點(diǎn)M,則在P、Q運(yùn)動(dòng)的過(guò)程中,
(1)求證:△ABQ ≌ △CAP;
(2)∠CMQ的大小變化嗎?若變化,則說(shuō)明理由,若不變,則求出它的度數(shù);
(3)連接PQ,當(dāng)點(diǎn)P,Q運(yùn)動(dòng)多少秒時(shí),△PBQ是直角三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在直角梯形ABCD中,動(dòng)點(diǎn)P從B點(diǎn)出發(fā),沿B→C→D→A勻速運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的路程為x,△ABP的面積為y,圖象如圖2所示.
(1)當(dāng)點(diǎn)P運(yùn)動(dòng)的路程x=4時(shí),△ABP的面積為y= ;
(2)求:線段AB的長(zhǎng);
(3)求:梯形ABCD的面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】從﹣2,﹣1,0,1,,4這六個(gè)數(shù)中,隨機(jī)抽取一個(gè)數(shù)記為a,若數(shù)a使關(guān)于x的分式方程有整數(shù)解,且使拋物線y=(a﹣1)x2+3x﹣1的圖象與x軸有交點(diǎn),那么這六個(gè)數(shù)中所滿足條件的a的值之和為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將坐標(biāo)原點(diǎn)O沿x軸向左平移2個(gè)單位長(zhǎng)度得到點(diǎn)A,過(guò)點(diǎn)A作y軸的平行線交反比例函數(shù)y=的圖象于點(diǎn)B,AB=.
(1)求反比例函數(shù)的解析式;
(2)若P(x1,y1)、Q(x2,y2)是該反比例函數(shù)圖象上的兩點(diǎn),且x1<x2時(shí),y1>y2,指出點(diǎn)P、Q各位于哪個(gè)象限?并簡(jiǎn)要說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com