【題目】已知一次函數(shù)與反比例函數(shù)的圖象交于點P3,m,Q1,3).

1)求反函數(shù)的函數(shù)關系式;

2)在給定的直角坐標系(如圖)中,畫出這兩個函數(shù)的大致圖象;

3)當x為何值時,一次函數(shù)的值大于反比例函數(shù)的值?

【答案】1;(2)見解析;(3

【解析】

1)由一次函數(shù)與反比例函數(shù)的圖象交于點P-3m),Q1-3),利用待定系數(shù)法即可求得反比例函數(shù)的關系式;
2)由(1),可求得點P的坐標,繼而畫出這兩個函數(shù)的大致圖象;
3)觀察圖象,即可求得一次函數(shù)的值大于反比例函數(shù)的值時,x的取值范圍.

解:(1)設反函數(shù)的函數(shù)關系式為:y=,
∵一次函數(shù)與反比例函數(shù)的圖象交于點Q1-3),
-3=,
解得:k=-3,
∴反函數(shù)的函數(shù)關系式為:y=-;

2)將點P-3m)代入y=-,
解得:m=1,
∴P-3,1),
函數(shù)圖象如圖:

3)觀察圖象可得:

x-30x1時,一次函數(shù)的值大于反比例函數(shù)的值.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在讀書月活動中,學校準備購買一批課外讀物,為使課外讀物滿足同學們的需求,學校就我最喜愛的課外讀物從文學、藝術、科普和其他四個類別進行了抽樣調(diào)查(每位同學只選一類),如圖是根據(jù)調(diào)查結果繪制的兩幅不完整的統(tǒng)計圖.

請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

1)本次調(diào)查中,一共調(diào)查了_____名同學;

2)條形統(tǒng)計圖中,m_____,n_______;

3)扇形統(tǒng)計圖中,藝術類讀物所在扇形的圓心角是______度;

4)學校計劃購買課外讀物5000冊,請根據(jù)樣本數(shù)據(jù),估計學校購買其他類讀物多少冊比較合理?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖,∠COD=90°,直線ABOC交于點B,與OD交于點A,射線OE與射線AF交于點G.若OE將∠BOA分成12兩部分,AF平分∠BAD,∠ABO=30°<<90° ,則∠OGA的度數(shù)為(用含的代數(shù)式表示)____________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線l1的解析式為,直線l2的解析式為,與x軸、y軸分別交于點A、點B,直線l1l2交于點C.

1)求點A、點B、點C的坐標,并求出△COB的面積;

2)若直線l2上存在點P(不與B重合),滿足SCOP=SCOB,請求出點P的坐標;

3)在y軸右側有一動直線平行于y軸,分別與l1,l2交于點MN,且點M在點N的下方,y軸上是否存在點Q,使△MNQ為等腰直角三角形?若存在,請直接寫出滿足條件的點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCDDCE的角平分線CG的反向延長線和ABE的角平分線BF交于點F,EF36°,則E=(

A.82°B.84°C.97°D.90°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】xy定義一種新運算T,規(guī)定:Tx,y=(其中a、b均為非零常數(shù)),這里等式右邊是通常的四則運算,例如:T0,1==b

1)已知T21=

①求a,b的值;

②若關于m的不等式組恰好有3個整數(shù)解,求p的取值范圍;

2)若Tx,y=Ty,x)對任意有理數(shù)xy都成立(這里Tx,y)和Tyx)均有意義),則a,b應滿足怎樣的關系式?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ADBC,BC,垂足分別為DF,23180,試說明:GDCB,請補充說明過程,并在括號內(nèi)填上相應的理由。

解:ADBC,EFBC(已知)

ADBEFB90( ),

EF//AD( ),

2180( ),

23180(已知),

13( ),

AB// ( ),

∴∠GDC=∠B( )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】按要求作圖.(不寫作法,保留作圖痕跡)

1)如圖1,點A在∠O的一邊上,在圖1中完成:

①過點A畫直線ABOA,與∠O的另一邊相交于點B;

②過點B畫直線BCOA;

2)如圖2ABC是鈍角三角形,在圖2中完成:

①畫ABC的中線AD;

②畫ABC的角平分線BE

③畫ABC的高線CF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】交通工程學理論把在單向道路上行駛的汽車看成連續(xù)的液體,并用流量、速度、密度三個概念描述車流的基本特征。其中流量q(輛/小時)指單位時間內(nèi)通過道路指定斷面的車輛數(shù);速度v(千米/小時)指通過道路指定斷面的車輛速度;密度(輛/千米)指通過道路指定斷面單位長度內(nèi)的車輛數(shù),為配合大數(shù)據(jù)治堵行動,測得某路段流量q與速度v之間的部分數(shù)據(jù)如下表:

速度v(千米/小時)

5

10

20

32

40

48

流量q(輛/小時)

550

1000

1600

1792

1600

1152


(1)根據(jù)上表信息,下列三個函數(shù)關系式中,刻畫q,v關系最準確的是(只需填上正確答案的序號)①
(2)請利用(1)中選取的函數(shù)關系式分析,當該路段的車流速為多少時,流量達到最大?最大流量是多少?
(3)已知q,v,k滿足 ,請結合(1)中選取的函數(shù)關系式繼續(xù)解決下列問題:
①市交通運行監(jiān)控平臺顯示,當 時道路出現(xiàn)輕度擁堵,試分析當車流密度k在什么范圍時,該路段出現(xiàn)輕度擁堵;
②在理想狀態(tài)下,假設前后兩車車頭之間的距離d(米)均相等,求流量q最大時d的值

查看答案和解析>>

同步練習冊答案