【題目】(引例)

如圖1,點(diǎn)AB、D在同一條直線上,在直線同側(cè)作兩個(gè)等腰直角三角形△ABC和△BDE,BABCBEBD,連接AECD.則AECD的關(guān)系是   

(模型建立)

如圖2,在△ABC和△BDE中,BABC,BEBD,∠ABC=∠DBEα,連接AE、CD相交于點(diǎn)H.求證:①AECD;②∠AHCα

(拓展應(yīng)用)

如圖3,在四邊形ABCD中,對(duì)角線ACBD交于點(diǎn)O,∠BDC90°,BDCD,∠BAD45°.若AB3,AD4,求AC2的值.

【答案】(引例)AECD,AECD(模型建立)證明見(jiàn)解析(拓展應(yīng)用)41

【解析】

(引例)根據(jù)題意可以證明△ABE≌△CBD,進(jìn)而得出∠AEB=∠CDB,AECD,據(jù)此即可得解;

(模型建立)如圖2中,設(shè)AEBC于點(diǎn)O.證明△ABE≌△CBDSAS),推出∠EAB=∠DCB,可得結(jié)論.

(拓展應(yīng)用)如圖3中,作DEDA,截取DEDA,連接AE,BE.則∠ADE90°,∠DAE45°,證明△EDB≌△ADCSAS),推出EBAC,求出BE2即可解決問(wèn)題.

解:(引例)結(jié)論:AECD,AECD

理由:如圖1中,延長(zhǎng)AECDF

∵在△ABE和△CBD中,

,

∴△ABE≌△CBDASA),

AECD,∠AEB=∠CDB,

∵∠AEB+EAB90°

∴∠CDB+EAB90°,

∴∠AFD90°

AECD

故答案為AECD,AECD

(模型建立)如圖2中,設(shè)AEBC于點(diǎn)O

∵∠ABC=∠EBD,

∴∠ABE=∠CBD,

ABCB,EBDB,

∴△ABE≌△CBDSAS),

∴∠EAB=∠DCB

∵∠OAB+AOB+ABO180°,∠OCH+COH+OHC180°,∠AOB=∠COH,

∴∠OHC=∠OBA,即∠AHCα

(拓展應(yīng)用)如圖3中,作DEDA,截取DEDA,連接AE,BE.則∠ADE90°,∠DAE45°,

∵∠ADE=∠BDC90°

∴∠ADC=∠EDB,

DEDA,DBDC

∴△EDB≌△ADCSAS),

EBAC

∵∠BAD=∠EAD45°,

∴∠EAB=∠EAD+BAD90°,

RtEAB中,AE2+AB2BE2

RtADE中,AD2+DE2AE2,

AD4,AB3

AE232,BE241,

AC2BE241

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在大課間活動(dòng)中,體育老師隨機(jī)抽取了七年級(jí)甲、乙兩班部分女學(xué)生進(jìn)行仰臥起坐的測(cè)試,并對(duì)成績(jī)進(jìn)行統(tǒng)計(jì)分析,繪制了頻數(shù)分布表和統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖表中的信息完成下列問(wèn)題:

頻數(shù)

頻率

第一組(0x15)

3

0.15

第二組(15x30)

6

a

第三組(30x45)

7

0.35

第四組(45x60)

b

0.20

(1)頻數(shù)分布表中a=_____,b=_____,并將統(tǒng)計(jì)圖補(bǔ)充完整;

(2)如果該校七年級(jí)共有女生180人,估計(jì)仰臥起坐能夠一分鐘完成3030次以上的女學(xué)生有多少人?

(3)已知第一組中只有一個(gè)甲班學(xué)生,第四組中只有一個(gè)乙班學(xué)生,老師隨機(jī)從這兩個(gè)組中各選一名學(xué)生談心得體會(huì),則所選兩人正好都是甲班學(xué)生的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AFDEF,且DF=15cm,EF=6cmAE=10cm.

1)求AF的長(zhǎng);

2)求正方形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】周日琪琪要騎車(chē)從家去書(shū)店買(mǎi)書(shū),一出家門(mén),遇到了鄰居亮亮,亮亮說(shuō):今天有風(fēng),而且去時(shí)逆風(fēng),要吃虧了,琪琪回答說(shuō):去時(shí)逆風(fēng),回來(lái)時(shí)順風(fēng),和無(wú)風(fēng)往返一趟所用時(shí)間相同”.(順風(fēng)速度無(wú)風(fēng)時(shí)騎車(chē)速度風(fēng)速,逆風(fēng)速度無(wú)風(fēng)時(shí)騎車(chē)速度風(fēng)速)

1)如果家到書(shū)店的路程是,無(wú)風(fēng)時(shí)琪琪騎自行車(chē)的速度是,他逆風(fēng)去書(shū)店所用時(shí)間是順風(fēng)回家所用時(shí)間的倍,求風(fēng)速是多少?

2)如果設(shè)從家到書(shū)店的路程為千米,無(wú)風(fēng)時(shí)騎車(chē)速度為千米/時(shí),風(fēng)速為千米/時(shí),則有風(fēng)往返一趟的時(shí)間為___________,無(wú)風(fēng)往返一趟的時(shí)間為_______,請(qǐng)你通過(guò)計(jì)算說(shuō)明琪琪和亮亮誰(shuí)說(shuō)得對(duì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,分別以線段AB兩端點(diǎn)A,B為圓心,以大于AB長(zhǎng)為半徑畫(huà)弧,兩弧交于C,D兩點(diǎn),作直線CDAB于點(diǎn)M,DEAB,BECD.

(1)判斷四邊形ACBD的形狀,并說(shuō)明理由;

(2)求證:ME=AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面是胡老師帶領(lǐng)學(xué)生,探究SSA是否能判定兩個(gè)三角形全等的過(guò)程,請(qǐng)完成下列填空.

如圖:已知,在中,________,(公共邊),,( ,,( ),則滿足兩邊及一邊的對(duì)角分別相等,即滿足________________,很顯然:________,(填全等于不全等于)下結(jié)論:SSA________(填不能)判定兩個(gè)三角形全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠1=∠2,則下列條件中,不能使△ABC≌△DBC成立的是。ā 。

A. ABCD B. ACBD C. A=∠D D. ABC=∠DCB

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】、乙兩位同學(xué)進(jìn)行長(zhǎng)跑訓(xùn)練,甲和乙所跑的路程S(單位:米)與所用時(shí)間t(單位:秒)之間的函數(shù)圖象分別為線段OA和折線OBCD.則下列說(shuō)法正確的是( )

A. 兩人從起跑線同時(shí)出發(fā),同時(shí)到達(dá)終點(diǎn)

B. 跑步過(guò)程中,兩人相遇一次

C. 起跑后160秒時(shí),甲、乙兩人相距最遠(yuǎn)

D. 乙在跑前300米時(shí),速度最慢

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一種實(shí)驗(yàn)用軌道彈珠,在軌道上行駛5分鐘后離開(kāi)軌道,前2分鐘其速度v(米/分)與時(shí)間t(分)滿足二次函數(shù)v=at2,后三分鐘其速度v(米/分)與時(shí)間t(分)滿足反比例函數(shù)關(guān)系,如圖,軌道旁邊的測(cè)速儀測(cè)得彈珠1分鐘末的速度為2米/分,求:

(1)二次函數(shù)和反比例函數(shù)的關(guān)系式.

(2)彈珠在軌道上行駛的最大速度.

【答案】(1)v=(2<t≤5) (2)8米/分

【解析】分析:(1)由圖象可知前一分鐘過(guò)點(diǎn)(1,2),后三分鐘時(shí)過(guò)點(diǎn)(2,8),分別利用待定系數(shù)法可求得函數(shù)解析式;

(2)把t=2代入(1)中二次函數(shù)解析式即可.

詳解:(1)v=at2的圖象經(jīng)過(guò)點(diǎn)(1,2),

a=2.

∴二次函數(shù)的解析式為:v=2t2,(0≤t≤2);

設(shè)反比例函數(shù)的解析式為v=

由題意知,圖象經(jīng)過(guò)點(diǎn)(2,8),

k=16,

∴反比例函數(shù)的解析式為v=(2<t≤5);

(2)∵二次函數(shù)v=2t2,(0≤t≤2)的圖象開(kāi)口向上,對(duì)稱(chēng)軸為y軸,

∴彈珠在軌道上行駛的最大速度在2秒末,為8/分.

點(diǎn)睛:本題考查了反比例函數(shù)和二次函數(shù)的應(yīng)用.解題的關(guān)鍵是從圖中得到關(guān)鍵性的信息:自變量的取值范圍和圖象所經(jīng)過(guò)的點(diǎn)的坐標(biāo).

型】解答
結(jié)束】
24

【題目】閱讀材料:小胖同學(xué)發(fā)現(xiàn)這樣一個(gè)規(guī)律:兩個(gè)頂角相等的等腰三角形,如果具有公共的頂角的頂點(diǎn),并把它們的底角頂點(diǎn)連接起來(lái)則形成一組旋轉(zhuǎn)全等的三角形.小胖把具有這個(gè)規(guī)律的圖形稱(chēng)為“手拉手”圖形.如圖1,在“手拉手”圖形中,小胖發(fā)現(xiàn)若∠BAC=∠DAE,AB=AC,AD=AE,則BD=CE.

(1)在圖1中證明小胖的發(fā)現(xiàn);

借助小胖同學(xué)總結(jié)規(guī)律,構(gòu)造“手拉手”圖形來(lái)解答下面的問(wèn)題:

(2)如圖2,AB=BC,∠ABC=∠BDC=60°,求證:AD+CD=BD;

(3)如圖3,在ABC中,AB=AC,BAC=m°,點(diǎn)E為ABC外一點(diǎn),點(diǎn)D為BC中點(diǎn),∠EBC=∠ACF,ED⊥FD,求EAF的度數(shù)(用含有m的式子表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案