【題目】如圖為二次函數(shù)y=ax2+bx+c(a≠0)的圖象,則下列說法:①a>0 ②2a+b=0 ③a+b+c>0 ④當(dāng)﹣1<x<3時(shí),y>0,其中正確的個(gè)數(shù)為( )
A. 1 B. 2 C. 3 D. 4
【答案】C
【解析】試題分析:①由二次函數(shù)y=ax2+bx+c(a≠0)的開口向下,可知a<0,故錯(cuò)誤;
②由二次函數(shù)與x軸的交點(diǎn)的坐標(biāo)為(-1,0),(3,0),可知對(duì)稱軸為x==1,即-=1,
因此可得b=-2a,即2a+b=0,故正確;
③由函數(shù)的頂點(diǎn)在第一象限,因此可知,當(dāng)x=1時(shí),y=a+b+c>0,故正確;
④由二次函數(shù)與x軸的交點(diǎn)的坐標(biāo)為(-1,0),(3,0),圖象開口向下,因此當(dāng)-1<x<3時(shí),y>0,故正確.
共3個(gè)正確的.
故選C
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線與雙曲線交于A、B兩點(diǎn),點(diǎn)B坐標(biāo)為(-4,-2),C為雙曲線上一點(diǎn),且在第一象限內(nèi),若△AOC面積為6,則點(diǎn)C坐標(biāo)為( )
A. (4,2) B. (2,3) C. (3,4) D. (2,4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)M的坐標(biāo)為(1,-2),線段MN=4,MN∥x軸,點(diǎn)N在第三象限,則點(diǎn)N的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的盒子里裝有只有顏色不同的黑、白兩種球共40個(gè),小穎做摸球?qū)嶒?yàn),她將盒子里面的球攪勻后從中隨機(jī)摸出一個(gè)球記下顏色,再把它放回盒子中,不斷重復(fù)上述過程,下表是實(shí)驗(yàn)中的一組統(tǒng)計(jì)數(shù)據(jù):
摸球的次數(shù) | 100 | 200 | 300 | 500 | 800 | 1000 | 3000 |
摸到白球的次數(shù) | 65 | 124 | 178 | 302 | 481 | 599 | 1803 |
摸到白球的頻率 | 0.65 | 0.62 | 0.593 | 0.604 | 0.601 | 0.599 | 0.601 |
(1)請(qǐng)估計(jì):當(dāng)很大時(shí),摸到白球的頻率將會(huì)接近 .(精確到0.1)
(2)假如你摸一次,你摸到白球的概率P(白球)= .
(3)試估算盒子里黑、白兩種顏色的球各有多少只?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)格中,△TAB頂點(diǎn)坐標(biāo)分別為T(1,1)、A(2,3)、B(4,2).
(1)以點(diǎn)T(1,1)為位似中心,按比例尺(TA′∶TA)3∶1在位似中心的同側(cè)將△TAB放大為△TA′B′,放大后點(diǎn)A、B的對(duì)應(yīng)點(diǎn)分別為A′、B′.畫出△TA′B′,并寫出點(diǎn)A′、B′的坐標(biāo);
(2)在(1)中,若C(a,b)為線段AB上任一點(diǎn),寫出變化后點(diǎn)C的對(duì)應(yīng)點(diǎn)C′的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com