【題目】如圖,在矩形紙片ABCD中,AB=3BC=9.將矩形紙片折疊,使點B和點D重合.

1)求ED的長;

2)求折痕EF的長.

【答案】(1)5;(2)

【解析】

1)先依據(jù)翻折的性質和平行線的性質證明三角形DEF為等腰三角形,從而得到ED=DF,設DE=x,則DF=x,FC=9-x,然后在DFC中依據(jù)勾股定理列方程求解即可;
2)過點EEM垂直于BC,垂足為M.先求得MF的長度,然后依據(jù)勾股定理可求得EF的長.

解:(1)∵四邊形ABCD為矩形,

AB=CD=3

ADBC,

∴∠BFE=DEF

∵∠BFE=EFD,

∴∠EFD=DEF,

DE=DF

DE=x,則DF=x,FC=9x

RtDFC中,FC2+DC2=DF2,

∴(9x2+32=x2.解得x=5

DE=5

2)過點EEM垂直于BC,垂足為M

根據(jù)(1)可知BF=DF=5,

AE=CF=4,

AE=CF=4,BF=DF=5,

MF=BFBM=54=1

RtMEF中,EF2=EM2+MF2=32+12=10

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在菱形ABCD中,∠B=∠EAF60°,∠BAE20°,則∠AEF的大小是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,二次函數(shù)的圖像與軸交于、兩點,與軸交于點,點是拋物線頂點,點是直線下方的拋物線上一動點.

)這個二次函數(shù)的表達式為____________.

)設直線的解析式為,則不等式的解集為___________.

)連結、,并把沿翻折,得到四邊形,那么是否存在點,使四邊形為菱形?若存在,請求出此時點的坐標;若不存在,請說明理由.

)當四邊形的面積最大時,求出此時點的坐標和四邊形的最大面積.

)若把條件是直線下方的拋物線上一動點.改為是拋物線上的任一動點,其它條件不變,當以、、、為頂點的四邊形為梯形時,直接寫出點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平分OBE,求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,AB=8cm,AD=12cm,點P在AD邊上以每秒1cm 的速度從點A向點D運動,點Q在BC邊上,以每秒4cm的速度從點C出發(fā),在CB間往返運動,兩個點同時出發(fā),當點P到達點D時停止(同時點Q也停止),在運動以后,以P、D、Q、B四點組成平行四邊形的次數(shù)有__次.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,數(shù)軸上、兩點對應的有理數(shù)分別為,點和點分別同時從點和點出發(fā),以每秒個單位長度,每秒個單位長度的速度向數(shù)軸正方向運動,設運動時間為.

(1)時,則、兩點對應的有理數(shù)分別是______;_______;

(2)是數(shù)軸上點左側一點,其對應的數(shù)是,且,求的值;

(3)在點和點出發(fā)的同時,點以每秒個單位長度的速度從點出發(fā),開始向左運動,遇到點后立即返回向右運動,遇到點后立即返回向左運動,與點相遇后再立即返回,如此往返,直到、兩點相遇時,點停止運動,求點運動的路程一共是多少個單位長度?停止的位置所對應的數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把矩形ABCD沿EF翻折,點B恰好落在AD邊的B′處,若AE=2,DE=6,∠EFB=60°,則矩形ABCD的面積是(

A. 12B. 24C. 12D. 16

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是我國古代數(shù)學家楊輝最早發(fā)現(xiàn)的,稱為楊輝三角.它的發(fā)現(xiàn)比西方要早五百年左右,由此可見我國古代數(shù)學的成就是非常值得中華民族自豪的!楊輝三角中有許多規(guī)律,如它的每一行的數(shù)字正好對應了(a+bnn為非負整數(shù))的展開式中a按次數(shù)從大到小排列的項的系數(shù)。

例如,展開式中的系數(shù)1、2、1恰好對應圖中第三行的數(shù)字;

再如,展開式中的系數(shù)1、3、3、1恰好對應圖中第四行的數(shù)字。

請認真觀察此圖,寫出(a+b4的展開式,(a+b4=_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O是等邊△ABC內(nèi)一點,∠AOB=110°,∠BOC=a.將△BOC繞點C按順時針方向旋轉60°得△ADC,連接OD.

(1)求證:△COD是等邊三角形;

(2)當a=150°時,試判斷△AOD的形狀,并說明理由;

(3)探究:當a為多少度時,△AOD是等腰三角形?

查看答案和解析>>

同步練習冊答案