精英家教網 > 初中數學 > 題目詳情

【題目】如圖,點A在線段BD上,在BD的同側作等腰RtABC和等腰RtADE,其中∠ABC=AED=90°CDBE、AE分別交于點P、M.對于下列結論:①△CAM∽△DEM;②CD=2BE;③MPMD=MAME;④2CB2=CPCM.其中正確的是(  )

A. ①②B. ①②③C. ①②③④D. ①③④

【答案】D

【解析】

①求出∠CAM=DEM=90°,根據相似三角形的判定推出即可;

②求出BAE∽△CAD,得出比例式,把AC=AB代入,即可求出答案;

③通過等積式倒推可知,證明PME∽△AMD即可;

2CB2轉化為AC2,證明ACP∽△MCA,問題可證.

∵在BD的同側作等腰RtABC和等腰RtADE,∠ABC=AED=90°

∴∠BAC=45°,∠EAD=45°

∴∠CAE=180°-45°-45°=90°,

即∠CAM=DEM=90°,

∵∠CMA=DME,

∴△CAM∽△DEM,故①正確;

由已知:AC=AB,AD=AE

,

∵∠BAC=EAD

∴∠BAE=CAD

∴△BAE∽△CAD

,即,即CD=BE,故②錯誤;

∵△BAE∽△CAD

∴∠BEA=CDA

∵∠PME=AMD

∴△PME∽△AMD

MPMD=MAME,故③正確;

由②MPMD=MAME

PMA=DME

∴△PMA∽△EMD

∴∠APD=AED=90°

∵∠CAE=180°-BAC-EAD=90°

∴△CAP∽△CMA

AC2=CPCM

AC=AB,

2CB2=CPCM,故④正確;

即正確的為:①③④,

故選D

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,拋物線經過的三個頂點,與軸相交于,點坐標為,點是點關于軸的對稱點,點軸的正半軸上.

1)求該拋物線的函數解析式;

2)點為線段上一動點,過點軸,軸, 垂足分別為點,當四邊形為正方形時,求出點的坐標;

3)將(2 中的正方形沿向右平移,記平移中的正方形為正方形,當點和點重合時停止運動, 設平移的距離為,正方形的邊交于點所在的直線與交于點, 連接,是否存在這樣的,使是等腰三角形?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】隨著我國經濟社會的發(fā)展,人民對于美好生活的追求越來越高.某社區(qū)為了了解家庭對于文化教育的消費悄況,隨機抽取部分家庭,對每戶家庭的文化教育年消費金額進行問卷調査,根據調查結果繪制成兩幅不完整的統計圖表.

請你根據統計圖表提供的信息,解答下列問題:

組別

家庭年文化教育消費金額x(元)

戶數

A

x≤5000

36

B

5000<x≤10000

m

C

10000<x≤15000

27

D

15000<x≤20000

15

E

x>20000

30

(1)本次被調査的家庭有__________戶,表中 m=__________;

(2)本次調查數據的中位數出現在__________組.扇形統計圖中,D組所在扇形的圓心角是__________度;

(3)這個社區(qū)有2500戶家庭,請你估計家庭年文化教育消費10000元以上的家庭有多少戶?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,O為坐標原點,點A坐標為(﹣20),∠OAB=90°,∠AOB=30°,將△OAB繞點O按順時針方向旋轉,旋轉角為αα≤150°),在旋轉過程中,點A、B的對應點分別為點A′、B′

(1)如圖1,當α=60°時,直接寫出點A′   、B′   的坐標;

(2)如圖2,當α=135°時,過點B′AB的平行線交AA′延長線于點C,連接BCAB′

①判斷四邊形AB′CB的形狀,并說明理由,

②求此時點A′和點B′的坐標;

(3)當α30°旋轉到150°時,(2)中的線段B′C也隨之移動,請求出B′C所掃過的區(qū)域的面積?(直接寫出結果即可).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC內接于⊙O,且ABAC,點D⊙O上,AD⊥AB于點A, AD BC交于點EFDA的延長線上,且AFAE

(1)求證:BF⊙O的切線;

(2)AD4,,求BC的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,以AB為直徑的O交△ABC的邊ACD、BCE,過DO的切線交BCF,交BA延長線于G,且DFBC

1)求證:BABC;

2)若AG2,cosB,求DE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+bx+c(b,c是常數)經過A(0,2)、B(4,0)兩點.

(1)求該拋物線的解析式和頂點坐標;

(2)作垂直x軸的直線x=t,在第一象限交直線ABM,交這條拋物線于N,求當t取何值時,MN有最大值?最大值是多少?

(3)在(1)的情況下,以A、M、N、D為頂點作平行四邊形,請直接寫出第四個頂點D的所有坐標(直接寫出結果,不必寫解答過程)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】荊州市濱江公園旁的萬壽寶塔始建于明嘉靖年間,周邊風景秀麗.現在塔底低于地面約7米,某校學生測得古塔的整體高度約為40米.其測量塔頂相對地面高度的過程如下:先在地面A處測得塔頂的仰角為30°,再向古塔方向行進a米后到達B處,在B處測得塔頂的仰角為45°(如圖所示),那么a的值約為_____米(≈1.73,結果精確到0.1).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,一次函數yx3的圖象與反比例函數y(k為常數,且k0)的圖象交于A1,a),B兩點.

1)求反比例函數的表達式及點B的坐標;

2)在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標.

查看答案和解析>>

同步練習冊答案