【題目】如圖,已知四邊形ABCD內(nèi)接于⊙O,DA、CB的延長(zhǎng)線交于點(diǎn)P,連接AC、BD,BD=BC.

(1)證明:AB平分∠PAC;

(2)若AC是直徑,AC=5,BC=4,求DC長(zhǎng).

【答案】(1)見(jiàn)解析;(2).

【解析】

(1)根據(jù)等腰三角形的性質(zhì),圓內(nèi)接四邊形的性質(zhì),圓周角定理證明;

(2)根據(jù)勾股定理求出AB,證明△APB∽△CPD,個(gè)相似三角形的性質(zhì)列出比例式,計(jì)算即可.

(1)證明:∵BD=BC,

∴∠BCD=BDC,

∵四邊形ABCD內(nèi)接于⊙O,

∴∠BCD=PAB,

∴∠PAB=BDC,

由圓周角定理得,∠BAC=BDC,

∴∠BAC=PAB,即AB平分∠PAC;

(2)AC是⊙O直徑,

∴∠ABC=90°,

AB==3,

ABPC,AB平分∠PAC,

AP=AC=5,PB=BC=4,

∵∠PAB=PCD,APB=CPD,

∴△APB∽△CPD,

=,即=

解得,CD=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一次函數(shù)y=﹣x+1與拋物線y=x2+bx+c交于A(0,1),B兩點(diǎn),B點(diǎn)縱坐標(biāo)為10,拋物線的頂點(diǎn)為C.

(1)求b,c的值;

(2)判斷ABC的形狀并說(shuō)明理由;

(3)點(diǎn)D、E分別為線段AB、BC上任意一點(diǎn),連接CD,取CD的中點(diǎn)F,連接AF,EF.當(dāng)四邊形ADEF為平行四邊形時(shí),求平行四邊形ADEF的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,DBC的中點(diǎn),過(guò)D點(diǎn)的直線GFACF,交AC的平行線BGG點(diǎn),DEDF,交AB于點(diǎn)E,連結(jié)EGEF

1)求證:BGCF;

2)請(qǐng)你判斷BE+CFEF的大小關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中, ,高、 相交于點(diǎn), ,且 .

(1)求線段 的長(zhǎng);

(2)動(dòng)點(diǎn) 從點(diǎn) 出發(fā),沿線段 以每秒 1 個(gè)單位長(zhǎng)度的速度向終點(diǎn) 運(yùn)動(dòng),動(dòng)點(diǎn) 點(diǎn) 出發(fā)沿射線 以每秒 4 個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),兩點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn) 到達(dá) 點(diǎn)時(shí), 兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn) 的運(yùn)動(dòng)時(shí)間為 秒,的面積為 ,請(qǐng)用含 的式子表示 ,并直接寫出相應(yīng)的 的取值范圍;

(3)(2)的條件下,點(diǎn) 是直線上的一點(diǎn)且 .是否存在 值,使以點(diǎn) 為頂 點(diǎn)的三角形與以點(diǎn) 為頂點(diǎn)的三角形全等?若存在,請(qǐng)直接寫出符合條件的 ; 若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O的直徑,EF切⊙O于點(diǎn)D,過(guò)點(diǎn)B作BH⊥EF于點(diǎn)H,交⊙O于點(diǎn)C,連接BD.

(1)求證:BD平分∠ABH;

(2)如果AB=12,BC=8,求圓心O到BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】八年級(jí)(1)班研究性學(xué)習(xí)小組為研究全校同學(xué)課外閱讀情況,在全校隨機(jī)邀請(qǐng)了部分同學(xué)參與問(wèn)卷調(diào)查,統(tǒng)計(jì)同學(xué)們一個(gè)月閱讀課外書的數(shù)量,并繪制了以下統(tǒng)計(jì)圖.

請(qǐng)根據(jù)圖中信息解決下列問(wèn)題:

(1)共有多少名同學(xué)參與問(wèn)卷調(diào)查;

(2)補(bǔ)全條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;

(3)全校共有學(xué)生1500人,請(qǐng)估計(jì)該校學(xué)生一個(gè)月閱讀2本課外書的人數(shù)約為多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)問(wèn)題:如圖中,,邊上一點(diǎn)(不與點(diǎn),重合),連接,過(guò)點(diǎn),并滿足,連接.則線段和線段的數(shù)量關(guān)系是_______,位置關(guān)系是_______

2)探索:如圖,當(dāng)點(diǎn)為邊上一點(diǎn)(不與點(diǎn),重合),均為等腰直角三角形,,,.試探索線段,,之間滿足的等量關(guān)系,并證明你的結(jié)論;

3)拓展:如圖,在四邊形中,,若,請(qǐng)直接寫出線段的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在平面直角坐標(biāo)系中,ABC三個(gè)頂點(diǎn)的坐標(biāo)分別是A(1,1)B (4,2)C(3,4)

1)畫出ABC關(guān)于y軸對(duì)稱的A1B1C1(要求:AA1BB1,CC1相對(duì)應(yīng));

2)通過(guò)畫圖,在x軸上確定點(diǎn)Q,使得QAQB之和最小,畫出QAQB,并直接寫出點(diǎn)Q的坐標(biāo).點(diǎn)Q的坐標(biāo)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圓材埋壁是我國(guó)著名的數(shù)學(xué)著作《九章算術(shù)》中的一個(gè)問(wèn)題,今有圓材,埋于壁中,不知大小,以鋸鋸之,深一寸,鋸道長(zhǎng)一尺,問(wèn)徑幾何?用現(xiàn)代的數(shù)學(xué)語(yǔ)言表達(dá)是:如圖,CD是⊙O的直徑,弦ABCD,垂足為E,CE = 1寸,AB = 1尺,求直徑的長(zhǎng)”. 依題意,CD長(zhǎng)為(

A. B. 13 C. 25 D. 26

查看答案和解析>>

同步練習(xí)冊(cè)答案