【題目】如圖,航拍無人機(jī)從A處測得一幢建筑物頂部B的仰角為45°,側(cè)得底部C的俯角為60°,此時航拍無人機(jī)與該建筑物的水平距離AD90米,那么該建筑物的高度BC(  )

A. 90+30B. 90+60C. 90+90D. 90+180

【答案】C

【解析】

RtABD中,根據(jù)正切函數(shù)求得BD=ADtanBAD,在RtACD中,求得CD=ADtanCAD,再根據(jù)BC=BD+CD,代入數(shù)據(jù)計算即可.

如圖,

∵在RtABD中,AD90,∠BAD45°,

BDAD90(m),

∵在RtACD中,∠CAD60°,

CDADtan60°90×90(m),

BCBD+CD90+90(m)

答:該建筑物的高度BC(90+90)米.

故選C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD的對角線ACBD交于點O,CE平分∠BCDAB于點E,交BD于點F,且∠ABC=60°,AB=2BC,連接OE.下列結(jié)論:

①∠ACD=30°,②SABCD=ACBC;③OEAC=6;④SOCF=2SOEF,⑤△OEF∽△BCF成立的個數(shù)有( 。

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知菱形,是動點,邊長為4, ,則下列結(jié)論正確的有幾個(

; 為等邊三角形

,則

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長是4,點EAB邊上一動點,連接CE,過點BBGCE于點G,點PAB邊上另一動點,則PD+PG的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在矩形中,,對角線相交于點,動點由點出發(fā),沿向點運(yùn)動.設(shè)點的運(yùn)動路程為,的面積為,的函數(shù)關(guān)系圖象如圖②所示,則邊的長為( )

A. 3B. 4C. 5D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,ADBC,CEAB,垂足分別為D,EADCE交于點F,ABCF

(1)如圖1,求證:DFDB;

(2)如圖2,若AFDF,在不添加任何輔助線和字母的情況下,請寫出圖中所有度數(shù)與3FAE的度數(shù)相等的角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在銳角ABC中,AB=4,BC=5,∠ACB=45°,將ABC繞點B按逆時針方向旋轉(zhuǎn),得到A1BC1

1)如圖1,當(dāng)點C1在線段CA的延長線上時,求∠CC1A1的度數(shù);

2)如圖2,連接AA1,CC1.若ABA1的面積為4,求CBC1的面積;

3)如圖3,點E為線段AB中點,點P是線段AC上的動點,在ABC繞點B按逆時針方向旋轉(zhuǎn)過程中,點P的對應(yīng)點是點P1,求線段EP1長度的最大值與最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校準(zhǔn)備購買若干臺A型電腦和B型打印機(jī).如果購買1A型電腦,2B型打印機(jī),一共需要花費(fèi)5900;如果購買2A型電腦,2B型打印機(jī),一共需要花費(fèi)9400.

(1)求每臺A型電腦和每臺B型打印機(jī)的價格分別是多少元?

(2)如果學(xué)校購買A型電腦和B型打印機(jī)的預(yù)算費(fèi)用不超過20000,并且購買B型打印機(jī)的臺數(shù)要比購買A型電腦的臺數(shù)多1,那么該學(xué)校至多能購買多少臺B型打印機(jī)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB3BC,以點A為圓心,AD為半徑畫弧交AB于點E連接CE,作線段CE的中垂線交AB于點F,連接CF,則sinCFB_____

查看答案和解析>>

同步練習(xí)冊答案