【題目】今年本市蜜桔大豐收,某水果商銷售一種蜜桔,成本價為10/千克,已知銷售價不低于成本價,且物價部門規(guī)定這種產品的銷售價不高于18/千克,市場調查發(fā)現(xiàn),該產品每天的銷售量(千克)與銷售價(元/千克)之間的函數(shù)關系如圖所示:

1)求之間的函數(shù)關系式;

2)該經銷商想要每天獲得150元的銷售利潤,銷售價應定為多少?

【答案】1;(2)該經銷商想要每天獲得150元的銷售利潤,銷售價應定為15.

【解析】

1)觀察函數(shù)圖象找出點的坐標,再利用待定系數(shù)法即可求出yx之間的函數(shù)關系式;

2)根據(jù)總利潤=每千克的銷售利潤×銷售數(shù)量,即可得出關于x的一元二次方程,解之取符合題意值即可得出結論.

1)設之間的函數(shù)關系式

,代入得:,解得:,

之間的函數(shù)關系式;

2)根據(jù)題意得:

整理得:,

解得:(不合題意,舍去).

答:該經銷商想要每天獲得150元的銷售利潤,銷售價應定為15.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】若反比例函數(shù)y與一次函數(shù)y2x4的圖象都經過點A(a,2)

(1)求反比例函數(shù)y的表達式;

(2)當反比例函數(shù)y的值大于一次函數(shù)y2x4的值時,求自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線軸分別交于,兩點.

1)求拋物線的解析式;

2)在第二象限內取一點,作垂直于軸于點,連接,且,,將沿軸向右平移個單位,當點落在拋物線上時,求的值;

3)在(2)的條件下,當點第一次落在拋物線上時記為點,點是拋物線對稱軸上一點.試探究:在拋物線上是否存在點,使以點、、為頂點的四邊形是平行四邊形,若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線軸正半軸交于點,與軸分別交于點和點

1)求拋物線的解析式;

2)點軸上一點,當相似時,求點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某文具店銷售一種進價為每本10元的筆記本,為獲得高利潤,以不低于進價進行銷售,結果發(fā)現(xiàn),每月銷售量y與銷售單價x之間的關系可以近似地看作一次函數(shù):y=﹣5x+150,物價部門規(guī)定這種筆記本每本的銷售單價不得高于18元.

(1)當每月銷售量為70本時,獲得的利潤為多少元;

(2)該文具店這種筆記本每月獲得利潤為W元,求每月獲得的利潤W元與銷售單價x之間的函數(shù)關系式,并寫出自變量的取值范圍;

(3)當銷售單價定為多少元時,每月可獲得最大利潤,最大利潤為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在□ABCD中,點G為對角線AC的中點,過點G的直線EF分別交邊ABCD于點E、F,過點G的直線MN分別交邊AD、BC于點M、N,且∠AGE=CGN.

(1)求證:四邊形ENFM為平行四邊形;

(2)當四邊形ENFM為矩形時,求證:BE=BN.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某汽車銷售公司5月份銷售某種型號汽車,當月該型號汽車的進價為20萬元/輛,若當月銷售量超過5輛時,每多售出1輛,所有售出的汽車進價均降低0.1萬元/輛.根據(jù)市場調查,月銷售量不會突破40輛.

1)設當月該型號汽車的銷售量為輛(,且為正整數(shù)),實際進價為萬元/輛,求的函數(shù)關系式;

2)已知該型號汽車的銷售價為22萬元/輛,公司計劃當月銷售利潤45萬元,那么該月需售出多少輛汽車?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是某品牌太陽能熱火器的實物圖和橫斷面示意圖,已知真空集熱管與支架所在直線相交于水箱橫斷面的圓心,支架與水平面垂直,厘米,,另一根輔助支架厘米,

1)求垂直支架的長度;(結果保留根號)

2)求水箱半徑的長度.(結果保留三個有效數(shù)字,參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,圓O的直徑為5,在圓O上位于直徑AB的異側有定點C和動點P,已知BC∶CA4∶3,點P在半圓弧AB上運動(不與A、B重合),過CCP的垂線CDPB的延長線于D

(1)求證:AC·CDPC·BC;

(2)當點P運動到AB弧中點時,求CD的長;

(3)當點P運動到什么位置時,△PCD的面積最大?并求這個最大面積S

查看答案和解析>>

同步練習冊答案