【題目】如圖,在平面直角坐標(biāo)系中有三個(gè)點(diǎn),是的邊上一點(diǎn),經(jīng)平移后得到,點(diǎn)的對應(yīng)點(diǎn)為.
(1)畫出平移后的,寫出點(diǎn)的坐標(biāo);
(2)的面積為_________________;
(3)若點(diǎn)是軸上一動(dòng)點(diǎn),的面積為,求與之間的關(guān)系式(用含的式子表示)
【答案】(1)見解析;(2);(3)當(dāng)時(shí),,當(dāng)時(shí),
【解析】
(1)利用P點(diǎn)和P1點(diǎn)的坐標(biāo)特征確定平移的方向和距離,然后根據(jù)此平移規(guī)律寫出點(diǎn)A1、B1、C1的坐標(biāo),最后描點(diǎn)即可;
(2)用一個(gè)矩形的面積分別減去三個(gè)三角形的面積去計(jì)算△ABC的面積;
(3)利用三角形面積公式得到s=2|m+1|,然后分類討論去絕對值即可.
解:(1)如圖,△A1B1C1為所作;點(diǎn)A1、B1、C1的坐標(biāo)分別為(-4,1),(-2,2),(-1,0);
(2)△ABC的面積=2×3-×1×2-×2×1-×1×3=;
故答案為:;
(3)s=2|m+1|,
當(dāng)m>-1時(shí),s=m+1;
當(dāng)m<-1時(shí),s=-1-m.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平行四邊形ABCD的兩條對角線相交于點(diǎn)O,E是BO的中點(diǎn),過B點(diǎn)作AC的平行線,交CE的延長線于點(diǎn)F,連接BF。
(1)求證:FB=AO;
(2)平行四邊形ABCD滿足什么條件時(shí),四邊形AFBO是矩形?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在初三綜合素質(zhì)評定結(jié)束后,為了了解年級的評定情況,現(xiàn)對初三某班的學(xué)生進(jìn)行了評定等級的調(diào)查,繪制了如下男女生等級情況折線統(tǒng)計(jì)圖和全班等級情況扇形統(tǒng)計(jì)圖.
(1)調(diào)查發(fā)現(xiàn)評定等級為合格的男生有2人,女生有1人,則全班共有 名學(xué)生.
(2)補(bǔ)全女生等級評定的折線統(tǒng)計(jì)圖.
(3)根據(jù)調(diào)查情況,該班班主任從評定等級為合格和A的學(xué)生中各選1名學(xué)生進(jìn)行交流,請用樹形圖或表格求出剛好選中一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形AEFG的頂點(diǎn)E,G分別在正方形ABCD的AB,AD邊上,連接B,交EF于點(diǎn)M,交FG于點(diǎn)N,設(shè)AE=a,AG=b,AB=c(b<a<c).
(1)求證: ;
(2)求△AMN的面積(用a,b,c的代數(shù)式表示);
(3)當(dāng)∠MAN=45°時(shí),求證:c2=2ab.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,求證:,請將證明過程填寫完整.
證明:∵(已知)
又∵( )
∴________,
∴____________( )
∴______________( )
又∵(已知)
∴________________,
∴( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸交于點(diǎn)A和點(diǎn)B(1,0),與y軸交于點(diǎn)C(0,3),其對稱軸l為x=﹣1.
(1)求拋物線的解析式并寫出其頂點(diǎn)坐標(biāo);
(2)若動(dòng)點(diǎn)P在第二象限內(nèi)的拋物線上,動(dòng)點(diǎn)N在對稱軸l上.
①當(dāng)PA⊥NA,且PA=NA時(shí),求此時(shí)點(diǎn)P的坐標(biāo);
②當(dāng)四邊形PABC的面積最大時(shí),求四邊形PABC面積的最大值及此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,∠ABC=25°,以點(diǎn)C為旋轉(zhuǎn)中心順時(shí)針旋轉(zhuǎn)后得到△A′B′C,且點(diǎn)A在邊A′B′上,則旋轉(zhuǎn)角的度數(shù)為( 。
A. 65°B. 60°C. 50°D. 40°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A、B、C三點(diǎn)不在同一直線上.
(1)若點(diǎn)A、B、C均在半徑為R的⊙O上,
①如圖①,當(dāng)∠A=135°,R=1時(shí),求∠BOC的度數(shù)和BC的長.
②如圖②,當(dāng)∠A為銳角時(shí),求證: ;
(2)若定長線段BC的兩個(gè)端點(diǎn)分別在∠MAN的兩邊AM、AN(B、C均與A不重合)滑動(dòng),如圖③,當(dāng)∠MAN=60°,BC=2時(shí),分別作BP⊥AM,CP⊥AN,交點(diǎn)為P,試探索在整個(gè)滑動(dòng)過程中,P、A兩點(diǎn)間的距離是否保持不變?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列各式:①;②;③.
(1)根據(jù)你觀察、歸納、發(fā)現(xiàn)的規(guī)律,寫出可以是______的平方.
(2)試猜想寫出第個(gè)等式,并說明成立的理由.
(3)利用前面的規(guī)律,將改成完全平方的形式為:______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com