【題目】如圖,某高樓頂部有一信號發(fā)射塔,在矩形建筑物ABCDA、C兩點測得該塔頂端F的仰角分別為∠α=48°和∠β=65°,矩形建筑物寬度AD=20m,高度CD=30m,則信號發(fā)射塔頂端到地面的高度FG__米(結果精確到1m).

參考數(shù)據(jù):sin48°=0.7,cos48°=0.7tan48°=1.1,cos65°=0.4tan65°=2.1

【答案】109

【解析】

延長ADFGH,則四邊形ABGH是矩形,AB=CD=GH=30m,AH=BG.設FH=xm.利用銳角三角函數(shù),分別用x表示FGCG,構建方程即可解決問題.

解:延長ADFGH,則四邊形ABGH是矩形,AB=CD=GH=30m,AH=BG.設FH=xm

FG=x+30

RtAFH中,∠α=48°,AH=
AD=20m,

CG=DH=
RtFCG中,∠β=65°,tan65°=
2.1=,
x=79.2
FG=FH+GH=109.2≈109m),
故答案為109

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】有這樣一個題目:

按照給定的計算程序,確定使代數(shù)式nn+2)大于2000n的最小正整數(shù)值.想一想,怎樣迅速找到這個n值,請與同學們交流你的體會.

小亮嘗試計算了幾組nnn+2)的對應值如下表:

n

50

40

nn+2

2600

1680

1)請你繼續(xù)小亮的嘗試,再算幾組填在上表中(幾組隨意,自己畫格),并寫出滿足題目要求的n的值;

2)結合上述過程,對于“怎樣迅速找到n值”這個問題,說說你的想法.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知頂點為P的拋物線C1的解析式為y=a(x-3)2(a≠0),且經(jīng)過點(0,1).

(1)a的值及拋物線C1的解析式;

(2)如圖,將拋物線C1向下平移h(h>0)個單位得到拋物線C2,過點K(0,m2)(m>0)作直線l平行于x,與兩拋物線從左到右分別相交于A,B,C,D四點,A,C兩點關于y軸對稱.

①點G在拋物線C1,m為何值時,四邊形APCG為平行四邊形?

②若拋物線C1的對稱軸與直線l交于點E,與拋物線C2交于點F.試探究:K點運動過程中,的值是否改變?若會,請說明理由;若不會,請求出這個值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:數(shù)學活動課上,樂老師給出如下定義:有一組對邊相等而另一組對邊不相等的凸四邊形叫做對等四邊形

理解:1如圖1,已知AB、C在格點小正方形的頂點上,請在方格圖中畫出以格點為頂點,ABBC為邊的兩個對等四邊形ABCD;

2如圖2,在圓內接四邊形ABCD中,ABO的直徑,AC=BD求證:四邊形ABCD是對等四邊形;

3如圖3,在RtPBC中,PCB=90°,BC=11,tanPBC=,點ABP邊上,且AB=13用圓規(guī)在PC上找到符合條件的點D,使四邊形ABCD為對等四邊形,并求出CD的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解某中學學生課余生活情況,對喜愛看課外書、體育活動、看電視、社會實踐四個方面的人數(shù)進行調查統(tǒng)計.現(xiàn)從該校隨機抽取名學生作為樣本,采用問卷調查的方法收集數(shù)據(jù)(參與問卷調查的每名學生只能選擇其中一項).并根據(jù)調查得到的數(shù)據(jù)繪制成了如圖所示的兩幅不完整的統(tǒng)計圖.由圖中提供的信息,解答下列問題:

(1)求n的值;

(2)若該校學生共有1200人,試估計該校喜愛看電視的學生人數(shù);

(3)若調查到喜愛體育活動的4名學生中有3名男生和1名女生,現(xiàn)從這4名學生中任意抽取2名學生,求恰好抽到2名男生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,ABAC,以AB為直徑的圓OBCD,交AC于點E,過點DDFAC于點F,交AB延長線于點G,連結AD

1)∠ADB   °,依據(jù)是   

2)求證:DF是圓O的切線;

3)已知BC4CF2,求AEBG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】大熊山某農家樂為了抓住五一小長假的商機,決定購進A、B兩種紀念品。若購進A種紀念品4件,B種紀念品3件,需要550元;若購進A種紀念品8件,B種紀念品5件,需要1050元。

1)求購進A、B兩種紀念品每件各需多少元。

2)若該農家樂決定購進這兩種紀念品共100件,考慮市場需求和資金周轉,用于購買這100件紀念品的資金不少于7500元,但不超過7650元,那么該農家樂共有幾種進貨方案。

3)若銷售每件A種紀念品可獲利潤30元,每件B種紀念品可獲利潤20元,在第(2)問的各種進貨方案中,哪一種方案獲利最大?最大利潤是多少元。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線yax22ax3aa0)與x軸交于A、B兩點(點A在點B左側),經(jīng)過點A的直線lykx+by軸交于點C,與拋物線的另一個交點為D,且CD4AC

1)直接寫出點A的坐標,并用含a的式子表示直線l的函數(shù)表達式(其中k、b用含a的式子表示).

2)點E為直線l下方拋物線上一點,當△ADE的面積的最大值為時,求拋物線的函數(shù)表達式;

3)設點P是拋物線對稱軸上的一點,點Q在拋物線上,以點AD、PQ為頂點的四邊形能否為矩形?若能,求出點P的坐標;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本小題滿分7分)

四張質地相同的卡片如圖所示.將卡片洗勻后,背面朝上放置在桌面上.

1)求隨機抽取一張卡片,恰好得到數(shù)字2的概率;

2)小貝和小晶想用以上四張卡片做游戲,游戲規(guī)則見信息圖.你認為這個游戲公平嗎?請用列表法或畫樹狀圖法說明理由,若認為不公平,請你修改規(guī)則,使游戲變得公平.

查看答案和解析>>

同步練習冊答案