【題目】圖中是小明完成的一道作業(yè)題,請你參考小明答方法解答下面的問題:

1)計算:①82008×(﹣0.1252008;

②(11×(﹣13×12

2)若24n16n219,求n的值.

【答案】1)①1;②﹣;(2n3

【解析】

1)①直接利用積的乘方運算法則將原式變形求出答案;

②直接利用積的乘方運算法則將原式變形求出答案;

2)利用冪的乘方運算法則和同底數(shù)冪的乘除運算法則化簡得出答案.

1)①82008×(﹣0.1252008

=(﹣8×0.1252008

=(﹣12008

1;

②原式=

=﹣;

2)由已知得,24n16n219

222n24n219,

1+2n+4n19,

解得:n3

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,為了測量某風景區(qū)內(nèi)一座塔AB的高度,小明分別在塔的對面一樓房CD的樓底C、樓頂D處,測得塔頂A的仰角為45°30°,已知樓高CD10m,求塔的高度.(sin30°0.50cos30°≈0.87,tan30°≈0.58)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】分別寫一個滿足下列條件的一元二次方程:

方程的兩個根相等___________________________________

方程的兩根互為相反數(shù)______________________________________

方程的兩根互為倒數(shù)__________________________________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】T1、T2分別為⊙O的內(nèi)接正六邊形和外切正六邊形.設T1的半徑rT1、T2的邊長分別為ab,T1、T2的面積分別為S1、S2.下列結論:①ra11;②rb;③ab1;④S1S234.其中正確的有_____.(填序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線yax24ax+3a的最高點的縱坐標是2

1)求拋物線的對稱軸及拋物線的表達式;

2)將拋物線在1≤x≤4之間的部分記為圖象G1,將圖象G1沿直線x1翻折,翻折后的圖象記為G2,圖象G1G2組成圖象G.過(0b)作與y軸垂直的直線l,當直線l和圖象G只有兩個公共點時,將這兩個公共點分別記為P1x1y1),Px2y2),求b的取值范圍和x1+x2的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB4,AD3,點NBC邊上的一點,且BNnn0),動點P從點A出發(fā),以每秒1個單位長的速度沿AB邊向點B運動,連接NP,作射線PMNPAD于點M,設點P運動的時間是t秒(t0).

1)當點M與點A重合時,t等于多少秒,當點M與點D重合時,n等于多少(用含字母t的代數(shù)式表示)

2)若n2,則

①在點P運動過程中,點M是否可以到達線段AD的延長線上?通過計算說明理由;

②連接ND,當t為何值時,NDPM?

3)過點NNKAB,交AD于點K,若在點P運動過程中,點K與點M不會重合,直接寫出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是兩個可以自由轉(zhuǎn)動的轉(zhuǎn)盤,甲轉(zhuǎn)盤被等分成3個扇形,乙轉(zhuǎn)盤被等分成4個扇形,每一個扇形上都標有相應的數(shù)字小強和小寧利用它們做游戲,游戲規(guī)則是:同時轉(zhuǎn)動兩個轉(zhuǎn)盤,當轉(zhuǎn)盤停止后,指針所指區(qū)域內(nèi)的兩數(shù)字之和小于9,小寧獲勝;指針所指區(qū)域內(nèi)的兩數(shù)字之和等于9為平局;指針所指區(qū)域內(nèi)的兩數(shù)字之和大于9,小強獲勝如果指針恰好指在分割線上,那么重轉(zhuǎn)一次.

畫樹狀圖表示所有可能出現(xiàn)的結果,并指出小寧獲勝的概率;

該游戲規(guī)則對小寧,小強是否公平?如公平,請說明理由,如不公平,請修改游戲規(guī)則,使游戲公平.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,AO是△ABC的角平分線.以O為圓心,OC為半徑作⊙O.

(1)求證:AB是⊙O的切線.

(2)已知AO交⊙O于點E,延長AO交⊙O于點D,tanD=,求的值.

(3)(3分)在(2)的條件下,設⊙O的半徑為3,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題:如圖(1),點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°試判斷BE、EFFD之間的數(shù)量關系.

【發(fā)現(xiàn)證明】小聰把ABE繞點A逆時針旋轉(zhuǎn)90°ADG,從而發(fā)現(xiàn)EF=BE+FD,請你利用圖(1)證明上述結論.

【類比引申】如圖(2),四邊形ABCD中,∠BAD≠90°,AB=AD,B+D=180°,點EF分別在邊BC、CD上,則當∠EAF與∠BAD滿足  關系時,仍有EF=BE+FD;請證明你的結論.

【探究應用】如圖(3),在某公園的同一水平面上,四條通道圍成四邊形ABCD.已知AB=AD=80米,∠B=60°ADC=120°,BAD=150°,道路BCCD上分別有景點EF,且AEAD,DF=401米,現(xiàn)要在E、F之間修一條筆直道路,求這條道路EF的長.(結果取整數(shù),參考數(shù)據(jù): =1.41 =1.73

查看答案和解析>>

同步練習冊答案