【題目】閱讀下列材料,解決問題:
我們把一個能被17整除的自然數(shù)稱為“節(jié)儉數(shù)”,“節(jié)儉數(shù)”的特征是:若把一個自然數(shù)的個位數(shù)字截去,再把剩下的數(shù)減去截去的那個個位數(shù)字的5倍,如果差是17的整數(shù)倍(包括0),則原數(shù)能被17整除.如果差太大或心算不易看出是否是17的倍數(shù),就繼續(xù)上述的“截尾、倍大、相減、驗差”的過程,直到能清楚判斷為止.
例如:判斷1675282是不是“節(jié)儉數(shù)”.判斷過程:167528﹣2×5=167518,16751﹣8×5=16711,1671﹣1×5=1666,166﹣6×5=136,到這里如果你仍然觀察不出來,就繼續(xù)13﹣6×5=﹣17,﹣17是17的整數(shù)倍,所以1675282能被17整除.所以1675282是“節(jié)儉數(shù)”.
(1)請用上述方法判斷7259和2098752 是否是“節(jié)儉數(shù)”,并說明理由;
(2)一個五位節(jié)儉數(shù),其中個位上的數(shù)字為b,十位上的數(shù)字為a,請求出這個數(shù).
【答案】(1)7259是“節(jié)儉數(shù)”; 2098752不是“節(jié)儉數(shù)”;(2)12342或12393.
【解析】
(1)模仿例題解決問題即可;
(2)由51×242=12342,51×243=12393,可得結(jié)論.
(1)725﹣9×5=680,68﹣0×5=68,68÷17=4,
所以7259能被17整除,是“節(jié)儉數(shù)”;
209875﹣2×5=209865,20986﹣5×5=20961,2096﹣1×5=2091,209﹣1×5=204,204÷17=12,
所以2098752不能被17整除,不是“節(jié)儉數(shù)”;
(2)∵51×242=12342,51×243=12393,
∴這個數(shù)是12342或12393.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠B=90°,AB∥ED ,交BC于E,交 AC于F, DE = BC,.
(1) 求證:△FCD 是等腰三角形
(2) 若AB=3.5cm,求CD的長。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點C是線段AB上除點A、B外的任意一點,分別以AC、BC為邊在線段AB的同旁作等邊△ACD和等邊△BCE,連接AE交DC于M,連接BD交CE于N,連接MN.
(1)求證:AE=BD;
(2)請判斷△CMN的形狀,并說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AD是中線,E是AD的中點,過點A作AF∥BC交BE的延長線于點F,連接CF
(1)求證:AD=CF;
(2)如果AB=AC,四邊形ADCF的形狀為 (直接寫出結(jié)果);
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形OABC的頂點O是坐標原點,邊OA和OC分別在x軸、y軸上,點B的坐標為(4,4).直線l經(jīng)過點C.
(1)若直線l與邊OA交于點M,過點A作直線l的垂線,垂足為D,交y軸于點E.
①如圖1,當OE=1時,求直線l對應(yīng)的函數(shù)表達式;
②如圖2,連接OD,求證:OD平分∠CDE.
(2)如圖3,若直線l與邊AB交于點P,且S△BCP=S四邊形AOCP,此時,在x軸上是否存在點Q,使△CPQ是以CP為直角邊的直角三角形?若存在,求點Q的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點為等邊三角形內(nèi)一點,連接,,,以為一邊作,且,連接、.
(1)判斷與的大小關(guān)系并證明;
(2)若,,,判斷的形狀并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠C=90°,AC=BC=2,點D、E分別在邊AC、AB上,AD=DE=AB,連接DE.將△ADE繞點A逆時針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為θ.
(1)問題發(fā)現(xiàn)
①當θ=0°時,= ;
②當θ=180°時,= .
(2)拓展探究
試判斷:當0°≤θ<360°時,的大小有無變化?請僅就圖2的情形給出證明;
(3)問題解決
①在旋轉(zhuǎn)過程中,BE的最大值為 ;
②當△ADE旋轉(zhuǎn)至B、D、E三點共線時,線段CD的長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的頂點B,C在x軸的正半軸上,反比例函數(shù)y= (k≠0)在第一象限的圖象經(jīng)過頂點A(m,2)和CD邊上的點E(n,),過點E的直線l交x軸于點F,交y軸于點G(0,-2),則點F的坐標是( )
A. (,0)B. (,0)C. (,0)D. (,0)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+mx+n與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知A(﹣1,0),C(0,2).
(1)求拋物線的表達式;
(2)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標;如果不存在,請說明理由;
(3)點E時線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com