【題目】如圖,在△ABC中,∠BAC90°,AD是中線(xiàn),EAD的中點(diǎn),過(guò)點(diǎn)AAFBCBE的延長(zhǎng)線(xiàn)于點(diǎn)F,連接CF

1)求證:ADCF;

2)如果ABAC,四邊形ADCF的形狀為   (直接寫(xiě)出結(jié)果);

【答案】1)見(jiàn)解析;(2)正方形

【解析】

1)由EAD的中點(diǎn),AFBC,易證得△AEF≌△DEB,即可得AFBD,又由在△ABC中,∠BAC90°,AD是中線(xiàn),根據(jù)直角三角形斜邊的中線(xiàn)等于斜邊的一半,即可證得ADBDCDBC,即可證得:ADAF;

2)由AFBDDC,AFBC,可證得:四邊形ADCF是平行四邊形,又由ABAC,根據(jù)三線(xiàn)合一的性質(zhì),可得ADBCADDC,繼而可得四邊形ADCF是正方形.

1)證明:∵AFBC

∴∠EAF=∠EDB,

EAD的中點(diǎn),

AEDE,

在△AEF和△DEB中,

∴△AEF≌△DEBASA),

AFBD,

∵在△ABC中,∠BAC90°,AD是中線(xiàn),

ADBDDCBC

ADAF

2)解:當(dāng)ABAC時(shí),四邊形ADCF是正方形.

AFBDDC,AFBC,

∴四邊形ADCF是平行四邊形,且ADAF

∴四邊形ADCF是菱形,

ABAC,AD是中線(xiàn),

ADBC,

∴四邊形ADCF是正方形.

故答案為正方形

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)不透明的袋中裝有20個(gè)只有顏色不同的球,其中5個(gè)黃球,8個(gè)黑球,7個(gè)紅球.

(1)求從袋中摸出一個(gè)球是黃球的概率;

(2)現(xiàn)從袋中取出若干個(gè)黑球,攪勻后,使從袋中摸出一個(gè)黑球的概率是,求從袋中取出黑球的個(gè)數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,有兩個(gè)形狀完全相同的直角三角形ABCEFG疊放在一起(點(diǎn)A與點(diǎn)E重合),已知AC=8cm,BC=6cm,C=90°,EG=4cm,EGF=90°,O是△EFG斜邊上的中點(diǎn).

如圖②,若整個(gè)△EFG從圖①的位置出發(fā),以1cm/s的速度沿射線(xiàn)AB方向平移,在△EFG平移的同時(shí),點(diǎn)P從△EFG的頂點(diǎn)G出發(fā),以1cm/s的速度在直角邊GF上向點(diǎn)F運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)F時(shí),點(diǎn)P停止運(yùn)動(dòng),△EFG也隨之停止平移.設(shè)運(yùn)動(dòng)時(shí)間為x(s),F(xiàn)G的延長(zhǎng)線(xiàn)交ACH,四邊形OAHP的面積為y(cm2)(不考慮點(diǎn)PG、F重合的情況).

(1)當(dāng)x為何值時(shí),OPAC;

(2)yx之間的函數(shù)關(guān)系式,并確定自變量x的取值范圍;

(3)是否存在某一時(shí)刻,使四邊形OAHP面積與△ABC面積的比為13:24?若存在,求出x的值;若不存在,說(shuō)明理由.(參考數(shù)據(jù):1142=12996,1152=13225,1162=134564.42=19.36,4.52=20.25,4.62=21.16)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我校圖書(shū)館大樓工程在招標(biāo)時(shí),接到甲乙兩個(gè)工程隊(duì)的投標(biāo)書(shū),每施工一個(gè)月,需付甲工程隊(duì)工程款16萬(wàn)元,付乙工程隊(duì)12萬(wàn)元。工程領(lǐng)導(dǎo)小組根據(jù)甲乙兩隊(duì)的投標(biāo)書(shū)測(cè)算,可有三種施工方案:

1)甲隊(duì)單獨(dú)完成此項(xiàng)工程剛好如期完工;

2)乙隊(duì)單獨(dú)完成此項(xiàng)工程要比規(guī)定工期多用3個(gè)月;

3)若甲乙兩隊(duì)合作2個(gè)月,剩下的工程由乙隊(duì)獨(dú)做也正好如期完工。

你覺(jué)得哪一種施工方案最節(jié)省工程款,說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小華是一位善于思考的學(xué)生,在一次數(shù)學(xué)活動(dòng)課上,他將一副直角三角板如圖位置擺放,A,B,D在同一直線(xiàn)上,EFAD,∠CAB=∠EDF=90°,∠C=45°,∠E=60°,量得DE=2.則BD_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小王同學(xué)準(zhǔn)備籌集資金為貧困山區(qū)兒童捐款,打算從淘寶網(wǎng)上購(gòu)進(jìn)一批閃光發(fā)箍和熒光棒在某演唱會(huì)現(xiàn)場(chǎng)出售,其中閃光發(fā)箍的購(gòu)買(mǎi)價(jià)格為6/個(gè),熒光棒的購(gòu)買(mǎi)價(jià)格為8/個(gè)

(1)小王計(jì)劃購(gòu)進(jìn)閃光發(fā)箍和熒光棒共120個(gè),且將閃光發(fā)箍加價(jià)40%、熒光棒加價(jià)20%后出售.當(dāng)所有物品售完后,若利潤(rùn)不低于256元,則小王至少應(yīng)購(gòu)買(mǎi)閃光發(fā)箍多少個(gè)?

(2)小王調(diào)整了方案,決定將閃光發(fā)箍的售價(jià)在進(jìn)價(jià)的基礎(chǔ)上上漲(a+10)%、熒光棒的售價(jià)在進(jìn)價(jià)基礎(chǔ)上上漲a%,在(1)中閃光發(fā)箍購(gòu)買(mǎi)量取得最小值的情況下,將閃光發(fā)箍的購(gòu)買(mǎi)量提a%,而熒光棒的購(gòu)買(mǎi)量保持不變,則全部售出后,最終可獲利246.4元,請(qǐng)求出a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料,解決問(wèn)題:

我們把一個(gè)能被17整除的自然數(shù)稱(chēng)為節(jié)儉數(shù)”,“節(jié)儉數(shù)的特征是:若把一個(gè)自然數(shù)的個(gè)位數(shù)字截去,再把剩下的數(shù)減去截去的那個(gè)個(gè)位數(shù)字的5倍,如果差是17的整數(shù)倍(包括0),則原數(shù)能被17整除.如果差太大或心算不易看出是否是17的倍數(shù),就繼續(xù)上述的截尾、倍大、相減、驗(yàn)差的過(guò)程,直到能清楚判斷為止.

例如:判斷1675282是不是節(jié)儉數(shù).判斷過(guò)程:167528﹣2×5=167518,16751﹣8×5=16711,1671﹣1×5=1666,166﹣6×5=136,到這里如果你仍然觀(guān)察不出來(lái),就繼續(xù)13﹣6×5=﹣17,﹣1717的整數(shù)倍,所以1675282能被17整除.所以1675282節(jié)儉數(shù)”.

(1)請(qǐng)用上述方法判斷72592098752 是否是節(jié)儉數(shù),并說(shuō)明理由;

(2)一個(gè)五位節(jié)儉數(shù),其中個(gè)位上的數(shù)字為b,十位上的數(shù)字為a,請(qǐng)求出這個(gè)數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在△ABC中,CE是外角∠ACD的平分線(xiàn),BE是∠ABC的平分線(xiàn).

(1)求證:∠A2E,以下是小明的證明過(guò)程,請(qǐng)?jiān)诶ㄌ?hào)里填寫(xiě)理由.

證明:∵∠ACD是△ABC的一個(gè)外角,∠2是△BCE的一個(gè)外角,(已知)

∴∠ACD=∠ABC+A,∠2=∠1+E(_________)

∴∠A=∠ACD﹣∠ABC,∠E=∠2﹣∠1(等式的性質(zhì))

CE是外角∠ACD的平分線(xiàn),BE是∠ABC的平分線(xiàn)(已知)

∴∠ACD22,∠ABC21(_______)

∴∠A2221(_________)

2(2﹣∠1)(_________)

2E(等量代換)

(2)如果∠A=∠ABC,求證:CEAB

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知AD為O的直徑,BC為O的切線(xiàn),切點(diǎn)為M,分別過(guò)A,D兩點(diǎn)作BC的垂線(xiàn),垂足分別為B,C,AD的延長(zhǎng)線(xiàn)與BC相交于點(diǎn)E.

(1)求證:△ABM∽△MCD;

(2)若AD=8,AB=5,求ME的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案