【題目】如圖,在10×10的網(wǎng)格中,每個(gè)小方格都是邊長(zhǎng)為1的小正方形,每個(gè)小正方形的頂點(diǎn)稱(chēng)為格點(diǎn).若拋物線(xiàn)經(jīng)過(guò)圖中的三個(gè)格點(diǎn),則以這三個(gè)格點(diǎn)為頂點(diǎn)的三角形稱(chēng)為拋物線(xiàn)的“內(nèi)接格點(diǎn)三角形”.以O(shè)為坐標(biāo)原點(diǎn)建立如圖所示的平面直角坐標(biāo)系,若拋物線(xiàn)與網(wǎng)格對(duì)角線(xiàn)OB的兩個(gè)交點(diǎn)之間的距離為 ,且這兩個(gè)交點(diǎn)與拋物線(xiàn)的頂點(diǎn)是拋物線(xiàn)的內(nèi)接格點(diǎn)三角形的三個(gè)頂點(diǎn),則滿(mǎn)足上述條件且對(duì)稱(chēng)軸平行于y軸的拋物線(xiàn)條數(shù)是( )
A.16
B.15
C.14
D.13
【答案】C
【解析】解:如圖,開(kāi)口向下,經(jīng)過(guò)點(diǎn)(0,0),(1,3),(3,3)的拋物線(xiàn)的解析式為y=﹣x2+4x,
然后向右平移1個(gè)單位,向上平移1個(gè)單位一次得到一條拋物線(xiàn),
可平移6次,
所以,一共有7條拋物線(xiàn),
同理可得開(kāi)口向上的拋物線(xiàn)也有7條,
所以,滿(mǎn)足上述條件且對(duì)稱(chēng)軸平行于y軸的拋物線(xiàn)條數(shù)是:7+7=14.
故選:C.
根據(jù)在OB上的兩個(gè)交點(diǎn)之間的距離為3 可知兩交點(diǎn)的橫坐標(biāo)的差為3,然后作出最左邊開(kāi)口向下的拋物線(xiàn),再向右平移1個(gè)單位,向上平移1個(gè)單位得到開(kāi)口向下的拋物線(xiàn)的條數(shù),同理可得開(kāi)口向上的拋物線(xiàn)的條數(shù),然后相加即可得解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】科學(xué)家為了推測(cè)最適合某種珍奇植物生長(zhǎng)的溫度,將這種植物分別放在不同溫度的環(huán)境中,經(jīng)過(guò)一定時(shí)間后,測(cè)試出這種植物高度的增長(zhǎng)情況,部分?jǐn)?shù)據(jù)如表:
溫度t/℃ | ﹣4 | ﹣2 | 0 | 1 | 4 |
植物高度增長(zhǎng)量l/mm | 41 | 49 | 49 | 46 | 25 |
科學(xué)家經(jīng)過(guò)猜想、推測(cè)出l與t之間是二次函數(shù)關(guān)系.由此可以推測(cè)最適合這種植物生長(zhǎng)的溫度為℃.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有一個(gè)“Z”型的工件(工件厚度忽略不計(jì)),如圖示,其中AB為20cm,BC為60cm,∠ABC=90°,∠BCD=50°,求該工件如圖擺放時(shí)的高度(即A到CD的距離).(結(jié)果精確到0.1m,參考數(shù)據(jù):sin50°≈0.766,cos50°≈0.643,tan50°≈1.192)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,AB=BC,∠ABC=90°,點(diǎn)D是AB的中點(diǎn),連接CD,過(guò)點(diǎn)B作BG⊥CD,分別交CD,CA于點(diǎn)E,F(xiàn),與過(guò)點(diǎn)A且垂直于A(yíng)B的直線(xiàn)相交于點(diǎn)G,連接DF,給出以下五個(gè)結(jié)論: ① ;②∠ADF=∠CDB;③點(diǎn)F是GE的中點(diǎn);④AF= AB;⑤S△ABC=5S△BDF ,
其中正確結(jié)論的序號(hào)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某公路(可視為軸)的同一側(cè)有A、B、C三個(gè)村莊,要在公路邊建一貨棧D,向A、B、C三個(gè)村莊送農(nóng)用物資,路線(xiàn)是D→A→B→C→D或D→C→B→A→D.試問(wèn)在公路邊是否存在一點(diǎn)D,使送貨路線(xiàn)之和最短?若存在,請(qǐng)?jiān)趫D中畫(huà)出點(diǎn)D所在的位置,簡(jiǎn)要說(shuō)明作法;若不存在,請(qǐng)說(shuō)明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一節(jié)數(shù)學(xué)課后,老師布置了一道課后練習(xí)題:
如圖,已知在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC于點(diǎn)O,點(diǎn)P、D分別在A(yíng)O和BC上,PB=PD,DE⊥AC于點(diǎn)E,求證:△BPO≌△PDE.
(1)理清思路完成解答
本題證明的思路可用下列框圖表示:
根據(jù)上述思路,請(qǐng)你完整地書(shū)寫(xiě)本題的證明過(guò)程.
(2)若PB平分∠ABO,其余條件不變.求證:AP=CD.
(3)知識(shí)遷移,探索新知
若點(diǎn)P是一個(gè)動(dòng)點(diǎn),點(diǎn)P運(yùn)動(dòng)到OC的中點(diǎn)P′時(shí),滿(mǎn)足題中條件的點(diǎn)D也隨之在直線(xiàn)BC上運(yùn)動(dòng)到點(diǎn)D′,請(qǐng)直接寫(xiě)出CD′與AP′的數(shù)量關(guān)系.(不必寫(xiě)解答過(guò)程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在長(zhǎng)方形ABCD中,AB=4,AD=6.延長(zhǎng)BC到點(diǎn)E,使CE=2,連接DE,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒2個(gè)單位的速度沿BC﹣CD﹣DA向終點(diǎn)A運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t的值為( )秒時(shí),△ABP和△DCE全等.
A. 1 B. 1或3 C. 1或7 D. 3或7
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線(xiàn)a∥b,且a與b之間的距離為4,點(diǎn)A到直線(xiàn)a的距離為2,點(diǎn)B到直線(xiàn)b的距離為3,AB.試在直線(xiàn)a上找一點(diǎn)M,在直線(xiàn)b上找一點(diǎn)N,滿(mǎn)足MN⊥a且AM+MN+NB的長(zhǎng)度和最短,則此時(shí)AM+NB=( 。
A. 6 B. 8 C. 10 D. 12
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com