【題目】類(lèi)比等腰三角形的定義,我們定義:有一組鄰邊相等的凸四邊形叫做等鄰邊四邊形。.
(1)概念理解
如圖1,在四邊形ABCD中,添加一個(gè)條件使得四邊形ABCD是等鄰邊四邊形。請(qǐng)寫(xiě)出你添加的一個(gè)條件;
(2)問(wèn)題探究
小明猜想:對(duì)角線互相平分的等鄰邊四邊形是菱形.她的猜想正確嗎?請(qǐng)說(shuō)明理由.
如圖2,小明面了一個(gè)Rt△ABC,其中∠ABC=90°,AB=2,BC=1,井將Rt△ABC沿∠ABC的平分線BB′方向平移得到△A′B′C′,連結(jié)AA′,BC′.小明要是平移后的四邊形ABC′A′是“等鄰邊四邊形”應(yīng)平移多少距離(即線段BB′的長(zhǎng))?
【答案】
(1)
解:答案不唯一,如:AB=BC,AB=AD,AD=CD,CD=BC;
(2)
解:小紅的結(jié)論正確.
理由如下:∵四邊形的對(duì)角線互相平分,
∴這個(gè)四邊形是平行四邊形,
∵四邊形是“等鄰邊四邊形”,
∴這個(gè)四邊形有一組鄰邊相等,
∴這個(gè)“等鄰邊四邊形”是菱形。
解:由∠ABC=90°,AB=2,BC=1,得:AC= ,
∵將Rt△ABC平移得到Rt△A′B′C′,
∴BB′=AA′,A′B′∥AB,A′B′=AB=2,B′C′=BC=1,A′C′=AC= ,
如下圖,當(dāng)AA′=AB時(shí),BB′=AA′=AB=2;
如下圖,當(dāng)AA′=A′C′時(shí),BB′=AA′=AC′= ;
如下圖,當(dāng)AC′=BC′= 時(shí),延長(zhǎng)C′B′交AB于點(diǎn)D,則C′B′⊥AB,
∵BB′平分∠ABC,
∴∠ABB′= ∠ABC=45°
∴∠BB′D=∠ABB′=45°,
∴B′D=BD,
設(shè)B′D=BD=x,則C′D=x+1,BB′= x
∵根據(jù)在Rt△BC′D中,BC′2=C′D2+BD2即x2+(x+1)2=5,
解得:x=1或x=-2(不合題意,舍去);
∴BB′= x= ;
當(dāng)BC′=AB=2時(shí),與第三種情況的方法同理可得:x= 或 (不符合題意舍去);
∴BB’= x= 。
故平移2或 或 或 。
【解析】(1)根據(jù)等鄰邊四邊形的定義,則只需要寫(xiě)一對(duì)鄰邊相等即可;(2)根據(jù)有一組鄰邊相等的平行四邊形是菱形去判定;根據(jù)新定義可知,有一組鄰邊相等即是等鄰邊四邊形,所以要分類(lèi)討論不同相鄰的邊相等時(shí)的BB′的長(zhǎng)。
【考點(diǎn)精析】關(guān)于本題考查的等腰三角形的性質(zhì)和平行四邊形的性質(zhì),需要了解等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱(chēng):等邊對(duì)等角);平行四邊形的對(duì)邊相等且平行;平行四邊形的對(duì)角相等,鄰角互補(bǔ);平行四邊形的對(duì)角線互相平分才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有下列命題:①無(wú)理數(shù)是無(wú)限不循環(huán)小數(shù);②64的平方根是8;③過(guò)一點(diǎn)有且只有一條直線與這條直線平行;④兩條直線被第三條直線所截,同位角相等,其中正確的個(gè)數(shù)是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線(其中)與x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,拋物線的對(duì)稱(chēng)軸l與x軸交于點(diǎn)D,且點(diǎn)D恰好在線段BC的垂直平分線上.
(1)求拋物線的關(guān)系式;
(2)過(guò)點(diǎn)的線段MN∥y軸,與BC交于點(diǎn)P,與拋物線交于點(diǎn)N.若點(diǎn)E是直線l上一點(diǎn),且∠BED=∠MNB-∠ACO時(shí),求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】春天來(lái)了,天氣一天比一天暖和,在同一地點(diǎn)某一物體,今天上午11點(diǎn)的影子比昨天上午11點(diǎn)的影子________.(填“長(zhǎng)”或“短”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A是雙曲線y= 在第一象限上的一動(dòng)點(diǎn),連接AO并延長(zhǎng)交另一分支于點(diǎn)B,以AB為斜邊作等腰Rt△ABC,點(diǎn)C在第二象限,隨著點(diǎn)A的運(yùn)動(dòng),點(diǎn)C的位置也不斷的變化,但始終在一函數(shù)圖象上運(yùn)動(dòng),則這個(gè)函數(shù)的解析式為( )
A.y=
B.y=
C.y=﹣
D.y=﹣
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列計(jì)算正確的是( 。
A.(a2b)2=a2b2
B.a6÷a2=a3
C.(3xy2)2=6x2y4
D.(﹣m)7÷(﹣m)2=﹣m5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點(diǎn),BD是對(duì)角線,AG∥DB交CB的延長(zhǎng)線于G.
(1)求證:△ADE≌△CBF;
(2)若四邊形 BEDF是菱形,則四邊形AGBD是什么特殊四邊形?并證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com