【題目】某籃球隊(duì)員在籃球聯(lián)賽中分別與甲隊(duì)、乙隊(duì)對(duì)陣各四場(chǎng),下表是他的技術(shù)統(tǒng)計(jì).

場(chǎng)次

對(duì)陣甲隊(duì)

對(duì)陣乙隊(duì)

得分(分)

失誤(次)

得分(分)

失誤(次)

第一場(chǎng)

25

2

27

3

第二場(chǎng)

30

0

31

1

第三場(chǎng)

27

3

20

2

第四場(chǎng)

26

2

26

4

1)他在對(duì)陣甲隊(duì)和乙隊(duì)的各四場(chǎng)比賽中,平均每場(chǎng)得分分別是多少?

2)利用方差判斷他在對(duì)陣哪個(gè)隊(duì)時(shí)得分比較穩(wěn)定;

3)根據(jù)上表提供的信息,判斷他在對(duì)陣哪個(gè)隊(duì)時(shí)總體發(fā)揮較好,簡(jiǎn)要說明理由.

【答案】1)他對(duì)陣甲隊(duì)的平均每場(chǎng)得分為27分,對(duì)陣乙隊(duì)的平均每場(chǎng)得分為26分;(2)他在對(duì)陣甲隊(duì)時(shí)得分比較穩(wěn)定;(3)他在對(duì)陣甲隊(duì)時(shí)總體發(fā)揮較好,理由見解析.

【解析】

1)根據(jù)平均數(shù)的計(jì)算公式分別進(jìn)行計(jì)算即可;
2)根據(jù)方差公式進(jìn)行計(jì)算,再根據(jù)方差的意義即可得出答案;
3)根據(jù)失誤次數(shù)和方差的意義即可得出答案.

1)解:2726

答:他對(duì)陣甲隊(duì)的平均每場(chǎng)得分為27分,對(duì)陣乙隊(duì)的平均每場(chǎng)得分為26分.

2)解:3.5

15.5

由可知,他在對(duì)陣甲隊(duì)時(shí)得分比較穩(wěn)定.

3)解:他在對(duì)陣甲隊(duì)時(shí)總體發(fā)揮較好.

理由:由可知他對(duì)陣甲隊(duì)時(shí)平均得分較高;

可知,他在對(duì)陣甲隊(duì)時(shí)得分比較穩(wěn)定;

計(jì)算得他對(duì)陣甲隊(duì)平均失誤為1.75次,對(duì)陣乙隊(duì)平均失誤為2.5次,

1.75次<2.5次可知他在對(duì)陣甲隊(duì)時(shí)失誤較少.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與y軸交于點(diǎn)A(0,-4),與x軸交于點(diǎn)B(-2,0),C(8,0),連接AB,AC

1)求出二次函數(shù)表達(dá)式;

2)若點(diǎn)N在線段BC上運(yùn)動(dòng)(不與點(diǎn)B,C重合),過點(diǎn)NNMAB,交AC于點(diǎn)M,連接AN,當(dāng)以點(diǎn)A,M,N為頂點(diǎn)的三角形與以點(diǎn)AB,O為頂點(diǎn)的三角形相似時(shí),求此時(shí)點(diǎn)N的坐標(biāo);

3)若點(diǎn)Nx軸上運(yùn)動(dòng),當(dāng)以點(diǎn)A,N,C為頂點(diǎn)的三角形是等腰三角形時(shí),請(qǐng)直接寫出此時(shí)點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,與弦所圍成圖形的外部的一定點(diǎn),是弦上的一動(dòng)點(diǎn),連接于點(diǎn).已知,設(shè),兩點(diǎn)間的距離為,,兩點(diǎn)間的距離為,兩點(diǎn)間的距離為

小石根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),分別對(duì)函數(shù),隨自變量的變化而變化的規(guī)律進(jìn)行了探究,下面是小石的探究過程,請(qǐng)補(bǔ)充完整:

1)按照下表中自變量的值進(jìn)行取點(diǎn)、畫圖、測(cè)量分別得到了,的幾組對(duì)應(yīng)值:

0

1

2

3

4

5

5.40

6

4.63

3.89

2.61

2.15

1.79

1.63

0.95

1.20

1.11

1.04

0.99

1.02

1.21

1.40

2.21

2)在同一平面直角坐標(biāo)系中,描出補(bǔ)全后的表中各組數(shù)值所對(duì)應(yīng)的點(diǎn),,并畫出函數(shù)的圖象;

3)結(jié)合函數(shù)圖象,解決問題:當(dāng)的中點(diǎn)時(shí),的長(zhǎng)度約為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線經(jīng)過點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)是線段上的動(dòng)點(diǎn)(點(diǎn)不與點(diǎn)重合),直線經(jīng)過點(diǎn),并與交于點(diǎn),過點(diǎn),交于點(diǎn)

1)求的函數(shù)表達(dá)式;

2)當(dāng)時(shí),

①求點(diǎn)的坐標(biāo);

②求

3)將點(diǎn)的橫坐標(biāo)記為,在點(diǎn)移動(dòng)的過程中,直接寫出的范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,△ABC中,AC=BC,以BC為直徑的⊙OAB于點(diǎn)D,過點(diǎn)DDEAC于點(diǎn)E,交BC的延長(zhǎng)線于點(diǎn)F

1)求證:AD=BD;

2)求證:DF是⊙O的切線

3)若⊙O直徑為18,求DE的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,EBC的中點(diǎn),連接DEPDE上一點(diǎn),∠BPC90°,延長(zhǎng)CPAD于點(diǎn)F.⊙O經(jīng)過P、D、F,交CD于點(diǎn)G

1)求證:DFDP;

2)若,,求DG的長(zhǎng);

3)連接BF,若BF是⊙O的切線,直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:

我們知道,四邊形的一條對(duì)角線把這個(gè)四邊形分成了兩個(gè)三角形,如果這兩個(gè)三角形相似(不全等),我們就把這條對(duì)角線叫做這個(gè)四邊形的“相似對(duì)角線”.

理解:

(1)如圖1,已知RtABC在正方形網(wǎng)格中,請(qǐng)你只用無刻度的直尺在網(wǎng)格中找到一點(diǎn)D,使四邊形ABCD是以AC為“相似對(duì)角線”的四邊形(保留畫圖痕跡,找出3個(gè)即可);

(2)如圖2,在四邊形ABCD中,∠ABC=80°,∠ADC=140°,對(duì)角線BD平分∠ABC.

求證:BD是四邊形ABCD的“相似對(duì)角線”;

(3)如圖3,已知FH是四邊形EFCH的“相似對(duì)角線”,∠EFH=∠HFG=30°,連接EG,若EFG的面積為2,求FH的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】201245日下午,重慶一中初2013級(jí)智力快車比賽的決賽在渝北校區(qū)正式進(jìn)行.智力快車活動(dòng)是我校綜合實(shí)踐課程的傳統(tǒng)版塊,已有多年歷史,比賽試題的內(nèi)容涉及到文史藝哲科技等多個(gè)方面.隨著時(shí)代的變化,其活動(dòng)項(xiàng)目也在不斷更新.今年的比賽除了繼承傳統(tǒng)的快速判斷猜猜看、英語平臺(tái)、風(fēng)險(xiǎn)提速四個(gè)環(huán)節(jié)外,特新增了動(dòng)手動(dòng)腦一項(xiàng).比賽結(jié)束后,一綜合實(shí)踐小組成員就新增環(huán)節(jié)的滿意程度,對(duì)現(xiàn)場(chǎng)的觀眾進(jìn)行了抽樣調(diào)查,給予評(píng)分,其中:非常滿意——5分,滿意——4分,一般——3分,有待改進(jìn)——2分,并將調(diào)查結(jié)果制作成了如下的兩幅不完整的統(tǒng)計(jì)圖:

1)本次共調(diào)查了 名同學(xué),本次調(diào)查同學(xué)評(píng)分的平均得分為 分;

2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)如果評(píng)價(jià)為一般的只有一名是男生,評(píng)價(jià)為有待改進(jìn)的只有一名是女生,

針對(duì)動(dòng)手動(dòng)腦環(huán)節(jié)的情況,綜合實(shí)踐小組的成員分別從評(píng)價(jià)為一般和評(píng)價(jià)

有待改進(jìn)的兩組中,分別隨機(jī)選出一名同學(xué)談?wù)勔庖姾徒ㄗh,請(qǐng)你用列表或畫樹狀圖的方法求出所選兩名同學(xué)剛好都是女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC=6,BC=4ADBC邊上的高,AM是△ABC外角∠CAE的平分線.以點(diǎn)D為圓心,適當(dāng)長(zhǎng)為半徑畫弧,交DA于點(diǎn)G,交DC于點(diǎn)H.再分別以點(diǎn)G、H為圓心,大于GH的長(zhǎng)為半徑畫弧,兩弧在∠ADC內(nèi)部交于點(diǎn)Q,連接DQ并延長(zhǎng)與AM交于點(diǎn)F,則DF的長(zhǎng)度為( ).

A.6B.C.D.8

查看答案和解析>>

同步練習(xí)冊(cè)答案