【題目】在北京市開展的首都少年先鋒崗活動中,某數(shù)學小組到人民英雄紀念碑站崗執(zhí)勤,并在活動后實地測量了紀念碑的高度. 方法如下:如圖,首先在測量點A處用高為1.5m的測角儀AC測得人民英雄紀念碑MN頂部M的仰角為35°,然后在測量點B處用同樣的測角儀BD測得人民英雄紀念碑MN頂部M的仰角為45°,最后測量出A,B兩點間的距離為15m,并且N,B,A三點在一條直線上,連接CD并延長交MN于點E. 請你利用他們的測量結果,計算人民英雄紀念碑MN的高度.

(參考數(shù)據(jù):sin35°≈0.6,cos35°≈0.8tan35°≈0.7

【答案】人民英雄紀念碑MN.的高度約為36.5.

【解析】試題分析:由題意得,四邊形ACDB,ACEN為矩形,從而得EN=AC=1.5.AB=CD=15,在Rt△MED中,由題意可得ME=DE,設ME=DE=x,則EC=x+15,在Rt△MEC中,可得ME=ECtan∠MCE,從而有x≈0.7(x+15),求出x的值,從而得MN=ME+EN≈36.5 .

試題解析:由題意得,四邊形ACDB,ACEN為矩形,

EN=AC=1.5,AB=CD=15,

中,

MED90°,MDE45°,

∴∠EMDMDE45°,

MEDE

MEDEx,則ECx+15,

中,∠MEC90°,

MCE35°,

,

,

,

∴人民英雄紀念碑MN.的高度約為36.5.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】定義如果過三角形一個頂點的直線與對邊所在直線相交得到的三角形中有一個與原三角形相似,那么我們稱這樣的直線為三角形的相似線

如圖1,ABC,直線CDAB交于點D,ACD∽△ABC則稱直線CDABC的相似線

解決問題

已知如圖2,ABCBACACB ABC

求作ABC的相似線

1小明用如下方法作出ABC的一條相似線

作法如圖3,ABC的外接圓O

C為圓心,AC的長為半徑畫弧O交于點P;

連接AP,BC于點D

則直線ADABC的相似線

請你證明小明的作法的正確性

2A點還有其它的ABC的相似線,請你參考1中的作法與結論利用尺規(guī)作圖,在圖3中再作出一條ABC的相似線AE;(寫出作法保留作圖痕跡,不要證明

3ABC,BAC=90°ABC中過A點的相似線有 ,B點的相似線有

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,方格紙中的每個小方格都是邊長為1個單位長度的正方形,每個小正方形的頂點叫格點,△ABC△DEF的頂點都在格點上,結合所給的平面直角坐標系解答下列問題:

1)畫出△ABC向上平移4個單位長度后所得到的△A1B1C1;

2)畫出△DEF繞點O按順時針方向旋轉90°后所得到的△D1E1F1;

3△A1B1C1△D1E1F1組成的圖形是軸對稱圖形嗎?如果是,請直接寫出對稱軸所在直線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將一個長方形沿著對角線剪開即可得到兩個全等的三角形,再把△ABC沿著AC方向平移,得到圖中的△GBH,BGAC于點E,GHCD于點F.在圖中,除△ACD與△HGB全等外,你還可以指出哪幾對全等的三角形(不能添加輔助線和字母)?請選擇其中一對加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請在橫線上填上合適的內容,完成下面的證明:

如圖,射線AH交折線ACGFEN于點B、D、E.已知∠A=∠1,∠C=∠F,BM平分∠CBD,EN平分∠FEH.求證:∠2=∠3.

證明:∵∠A=∠1(已知)

∴AC∥GF(

∴( )(

∵∠C=∠F(已知)

∴∠F=∠G

∴( )(

∴( )(

∵BM平分∠CBD,EN平分∠FEH

∴∠2= ∠3=

∴∠2=∠3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點E是矩形ABCDAB上一動點(不與點B重合),過點EEFDEBC于點F,連接DF.已知AB = 4cm,AD = 2cm,設AE兩點間的距離為xcm,DEF面積為ycm2.小明根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進行了探究.

下面是小明的探究過程,請補充完整:

1)確定自變量x的取值范圍是 ;

2)通過取點、畫圖、測量、分析,得到了xy的幾組值,如下表:

x/cm

0

0.5

1

1.5

2

2.5

3

3.5

y/cm2

4.0

3.7

3.9

3.8

3.3

2.0

(說明:補全表格時相關數(shù)值保留一位小數(shù))

3)建立平面直角坐標系,描出以補全后的表中各對對應值為坐標的點,畫出該函數(shù)的圖象;

4結合畫出的函數(shù)圖象,解決問題:當DEF面積最大時,AE的長度為 cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于平面直角坐標系xOy中的點P和⊙C,給出如下定義:如果⊙C的半徑為rC外一點P到⊙C的切線長小于或等于2r,那么點P叫做⊙C離心點”.

1)當⊙O的半徑為1時,

①在點P1 ),P20,-2),P3,0中,⊙O離心點 ;

②點Pm,n)在直線上,且點P是⊙O離心點,求點P橫坐標m的取值范圍;

2C的圓心Cy軸上,半徑為2,直線x軸、y軸分別交于點A,B. 如果線段AB上的所有點都是⊙C離心點,請直接寫出圓心C縱坐標的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】國慶節(jié)放假時,小華一家三口一起乘小轎車去鄉(xiāng)下探望爺爺、奶奶和外公、外婆.早上從家里出發(fā),向東走了4千米到超市買東西,然后又向東走了3千米到爺爺家,中午從爺爺家出發(fā)向西走了12千米到外公家,晚上返回家里.

(1)若以家為原點,向東為正方向,用1個單位長度表示1千米,請將超市、爺爺家和外公家的位置在下面數(shù)軸上分別用點A、B、C表示出來;

(2)問超市A和外公家C相距多少千米?

(3)若小轎車每千米耗油0.09升,求小明一家從出發(fā)到返回家所經(jīng)歷路程小車的耗油量.(精確到0.1升)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c的頂點為M(﹣2,﹣4),與x軸交于A、B兩點,且A(﹣6,0),與y軸交于點C.

(1)求拋物線的函數(shù)解析式;

(2)求△ABC的面積;

(3)能否在拋物線第三象限的圖象上找到一點P,使△APC的面積最大?若能,請求出點P的坐標;若不能,請說明理由.

查看答案和解析>>

同步練習冊答案