【題目】定義:如果過(guò)三角形一個(gè)頂點(diǎn)的直線與對(duì)邊所在直線相交,得到的三角形中有一個(gè)與原三角形相似,那么我們稱(chēng)這樣的直線為三角形的相似線.
如圖1,△ABC中,直線CD與AB交于點(diǎn)D,若△ACD∽△ABC,則稱(chēng)直線CD是△ABC的相似線.
解決問(wèn)題:
已知:如圖2,在△ABC中,∠BAC>∠ACB >∠ABC.
求作:△ABC的相似線.
(1)小明用如下方法作出△ABC的一條相似線:
作法:如圖3,①作△ABC的外接圓⊙O;
②以C為圓心,AC的長(zhǎng)為半徑畫(huà)弧,與⊙O交于點(diǎn)P;
③連接AP,交BC于點(diǎn)D.
則直線AD為△ABC的相似線.
請(qǐng)你證明小明的作法的正確性.
(2)過(guò)A點(diǎn)還有其它的△ABC的相似線,請(qǐng)你參考(1)中的作法與結(jié)論,利用尺規(guī)作圖,在圖3中再作出一條△ABC的相似線AE;(寫(xiě)出作法,保留作圖痕跡,不要證明)
(3)若△ABC中,∠BAC=90°,則△ABC中過(guò)A點(diǎn)的相似線有 條,過(guò)B點(diǎn)的相似線有 條.
【答案】(1)答案見(jiàn)解析;(2)答案見(jiàn)解析;(3)1條,3條.
【解析】(1)連接CP,根據(jù)條件得出△ABC∽△DAC,即可求解;(2)截取BQ=BA,再作直線AQ,即可;(3)根據(jù)相似三角形的判定方法分別利用平行線及垂直平分線的性質(zhì)得出對(duì)應(yīng)角相等即可.
(1)連接CP,由作圖可得AC=PC,則=
∴∠EAC=∠B
∵∠C是公共角
∴△ABC∽△DAC
∴直線AD為△ABC的相似線.
(2)如圖,截取BQ=BA,交⊙O于點(diǎn)Q;
作直線AQ,交BC于點(diǎn)E.
則直線AE為所求作的相似線.
畫(huà)圖正確
(3)1條,3條
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD⊥BC,垂足為D,點(diǎn)E在AB上,EF⊥BC,垂足為F.
(1)AD與EF平行嗎?為什么?
(2)如果∠1=∠2,且∠3=115°,求∠BAC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】要從甲、乙兩名同學(xué)中選出一名,代表班級(jí)參加射擊比賽,如圖是兩人最近10次射擊訓(xùn)練成績(jī)的折線統(tǒng)計(jì)圖.
(1)已求得甲的平均成績(jī)?yōu)?/span>8環(huán),求乙的平均成績(jī);
(2)觀察圖形,直接指出甲,乙這10次射擊成績(jī)的方差s甲2,s乙2哪個(gè)大?
(3)如果其他班級(jí)參賽選手的射擊成績(jī)都在7環(huán)左右,本班應(yīng)該選哪位參賽更合適?為什么?如果其他班級(jí)參賽選手的射擊成績(jī)都在9環(huán)左右,本班應(yīng)該選哪位參賽更合適?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,AB是⊙O的直徑,點(diǎn)C在⊙O上,△ABC的外角平分線BD交⊙O于D,DE∥AC交CB的延長(zhǎng)線于E.
(1)求證:DE是⊙O的切線;
(2)若∠A=30°,求證:BD=BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)幾何體由大小相同的正方體搭成,從上面看到的幾何體的形的形狀狀圖如圖所示,其中小正方形中的數(shù)字表示在該位置的小正方體的個(gè)數(shù),
(1)請(qǐng)畫(huà)出從正面和左面看到的這個(gè)幾何體的形狀圖.
(2)若每個(gè)小正方圖的棱長(zhǎng)都為1,則搭成的這個(gè)幾何體的體積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD//EF,∠1+∠2=180°,
(1)若∠1=50°,求∠BAD的度數(shù);
(2)若DG⊥AC,垂足為G,∠BAC=90°,試說(shuō)明:DG平分∠ADC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,,,點(diǎn)B在x軸上,且.
求點(diǎn)B的坐標(biāo);
求的面積;
在y軸上是否存在P,使以A、B、P三點(diǎn)為頂點(diǎn)的三角形的面積為10?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角坐標(biāo)系中,在邊長(zhǎng)為1的正方形網(wǎng)格中,△AOB的頂點(diǎn)均在格點(diǎn)上,點(diǎn)A,B的坐標(biāo)分別是A(3,1),B(2,3).
(1)請(qǐng)?jiān)趫D中畫(huà)出△AOB關(guān)于y軸的對(duì)稱(chēng)△A′OB′,點(diǎn)A′的坐標(biāo)為 ,點(diǎn)B′的坐標(biāo)為 ;
(2)請(qǐng)寫(xiě)出A′點(diǎn)關(guān)于x軸的對(duì)稱(chēng)點(diǎn)A′'的坐標(biāo)為 ;
(3)求△A′OB′的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在北京市開(kāi)展的“首都少年先鋒崗”活動(dòng)中,某數(shù)學(xué)小組到人民英雄紀(jì)念碑站崗執(zhí)勤,并在活動(dòng)后實(shí)地測(cè)量了紀(jì)念碑的高度. 方法如下:如圖,首先在測(cè)量點(diǎn)A處用高為1.5m的測(cè)角儀AC測(cè)得人民英雄紀(jì)念碑MN頂部M的仰角為35°,然后在測(cè)量點(diǎn)B處用同樣的測(cè)角儀BD測(cè)得人民英雄紀(jì)念碑MN頂部M的仰角為45°,最后測(cè)量出A,B兩點(diǎn)間的距離為15m,并且N,B,A三點(diǎn)在一條直線上,連接CD并延長(zhǎng)交MN于點(diǎn)E. 請(qǐng)你利用他們的測(cè)量結(jié)果,計(jì)算人民英雄紀(jì)念碑MN的高度.
(參考數(shù)據(jù):sin35°≈0.6,cos35°≈0.8,tan35°≈0.7)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com