【題目】新冠肺炎疫情在全球蔓延,造成了嚴(yán)重的人員傷亡和經(jīng)濟(jì)損失,其中一個(gè)原因是新冠肺炎病毒傳播速度非?欤粋(gè)人如果感染某種病毒,經(jīng)過(guò)了兩輪的傳播后被感染的總?cè)藬?shù)將達(dá)到64人.
(1)求這種病毒每輪傳播中一個(gè)人平均感染多少人?
(2)按照上面的傳播速度,如果傳播得不到控制,經(jīng)過(guò)三輪傳播后一共有多少人被感染?
【答案】(1)7人;(2)512人
【解析】
(1)設(shè)每輪傳播中平均每人感染了x人,根據(jù)經(jīng)過(guò)兩輪傳染后共有64人被感染列方程求出x即可得答案;
(2)求出第三輪過(guò)后又被感染的人數(shù),進(jìn)而可得答案.
(1)設(shè)一個(gè)人平均感染x人,
∵經(jīng)過(guò)了兩輪的傳播后被感染的總?cè)藬?shù)將達(dá)到64人,
∴,
整理得:x2+2x-63=0,
解得:(舍去),
∴這種病毒每輪傳播中一個(gè)人平均感染7人.
(2)(人),
答:經(jīng)過(guò)三輪傳播后一共有512人被感染.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與y軸正半軸相交,其頂點(diǎn)坐標(biāo)為(,1),下列結(jié)論:①abc<0;②a+b=0;③4ac﹣b2=4a;④a+b+c<0.其中正確的有( 。﹤(gè).
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直l1∥l2,點(diǎn)A、B固定在直線(xiàn)l2上,點(diǎn)C是直線(xiàn)11上一動(dòng)點(diǎn),若點(diǎn)E、F分別為CA、CB中點(diǎn),對(duì)于下列各值:①線(xiàn)段EF的長(zhǎng);②△CEF的周長(zhǎng);③△CEF的面積;④∠ECF的度數(shù),其中不隨點(diǎn)C的移動(dòng)而改變的是( 。
A.①②B.①③C.②④D.③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】深圳某百果園店售賣(mài)贛南臍橙,已知每千克臍橙的成本價(jià)為元,在銷(xiāo)售臍橙的這天時(shí)間內(nèi),銷(xiāo)售單價(jià)(元/千克)與時(shí)間第(天)之間的函數(shù)關(guān)系式為(,且為整數(shù)),日銷(xiāo)售量(千克)與時(shí)間第(天)之間的函數(shù)關(guān)系式為(,且為整數(shù))
(1)請(qǐng)你直接寫(xiě)出日銷(xiāo)售利潤(rùn)(元)與時(shí)間第(天)之間的函數(shù)關(guān)系式;
(2)該店有多少天日銷(xiāo)售利潤(rùn)不低于元?
(3)在實(shí)際銷(xiāo)售中,該店決定每銷(xiāo)售千克臍橙,就捐贈(zèng)元給希望工程,在這天中,每天扣除捐贈(zèng)后的日銷(xiāo)售利潤(rùn)隨時(shí)間的增大而增大,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑作⊙O交AB于點(diǎn)D,E為BC的中點(diǎn),連接DE并延長(zhǎng)交AC的延長(zhǎng)線(xiàn)于點(diǎn)F.
(1)求證:DE是⊙O的切線(xiàn);
(2)若CF=2,DF=4,求⊙O直徑的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在完善基礎(chǔ)設(shè)施、改善市容市貌、提升城市品質(zhì)過(guò)程中,2019年我市開(kāi)展人行道改造工程,需要花崗巖地板磚鋪設(shè)人行道.現(xiàn)租用甲、乙兩種貨車(chē)運(yùn)載地板磚,已知一輛甲車(chē)每次運(yùn)載的重量比一輛乙車(chē)多2噸,且甲車(chē)運(yùn)載16噸地板磚和乙車(chē)運(yùn)載12噸地板磚所用的車(chē)輛數(shù)相同.
(1)甲、乙兩種貨車(chē)每次運(yùn)載地板磚各多少?lài)崳?/span>
(2)現(xiàn)租用甲車(chē)a輛、乙車(chē)b輛,剛好運(yùn)載地板磚100噸,且a≤3b,共有多少種租車(chē)方案?
(3)在(2)中已知一輛甲車(chē)每次的運(yùn)費(fèi)是380元,一輛乙車(chē)每次的運(yùn)費(fèi)是300元,如何租用甲、乙兩種車(chē)可使得總運(yùn)費(fèi)最低?求出最低總運(yùn)費(fèi).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=x﹣2的圖象分別交x、y軸于點(diǎn)A、B,拋物線(xiàn)y=x2+bx+c經(jīng)過(guò)點(diǎn)A、B,點(diǎn)P為第四象限內(nèi)拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn).
(1)求此拋物線(xiàn)的函數(shù)解析式;
(2)過(guò)點(diǎn)P作PM∥y軸,分別交直線(xiàn)AB、x軸于點(diǎn)C、D,若以點(diǎn)P、B、C為頂點(diǎn)的三角形與以點(diǎn)A、C、D為頂點(diǎn)的三角形相似,求點(diǎn)P的坐標(biāo);
(3)當(dāng)∠PBA=2∠OAB時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題情境:
在綜合與實(shí)踐課上,老師讓同學(xué)們以“矩形紙片的剪拼”為主題開(kāi)展數(shù)學(xué)活動(dòng).如 圖 1,將:矩形紙片 ABCD 沿對(duì)角線(xiàn) AC 剪開(kāi),得到△ABC 和△ACD.并且量得 AB =4cm,AC=8cm.
操作發(fā)現(xiàn):
(1)將圖 1 中的△ACD 以點(diǎn) A 為旋轉(zhuǎn)中心,按逆時(shí)針?lè)较蛐D(zhuǎn)∠α,使∠α=∠BAC,得到如圖 2 所示的△AC′D,過(guò)點(diǎn) C 作 AC′的平行線(xiàn),與 DC'的延長(zhǎng)線(xiàn) 交于點(diǎn) E,則四邊形 ACEC′的形狀是 .
(2)創(chuàng)新小組將圖 1 中的△ACD 以點(diǎn) A 為旋轉(zhuǎn)中心,按逆時(shí)針?lè)较蛐D(zhuǎn),使 B、 A、D 三點(diǎn)在同一條直線(xiàn)上,得到如圖 3 所示的△AC′D,連接 CC',取 CC′的中 點(diǎn) F,連接 AF 并延長(zhǎng)至點(diǎn) G,使 FG=AF,連接 CG、C′G,得到四邊形 ACGC′, 發(fā)現(xiàn)它是正方形,請(qǐng)你證明這個(gè)結(jié)論.
實(shí)踐探究:
(3)縝密小組在創(chuàng)新小組發(fā)現(xiàn)結(jié)論的基礎(chǔ)上,進(jìn)行如下操作:將△ABC 沿著 BD 方向平移,使點(diǎn) B 與點(diǎn) A 重合,此時(shí) A 點(diǎn)平移至 A'點(diǎn),A'C 與 BC′相交于點(diǎn) H, 如圖 4 所示,連接 CC′,試求 tan∠C′CH 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,AB=3,M是CD邊上一動(dòng)點(diǎn)(不與D點(diǎn)重合),點(diǎn)D與點(diǎn)E關(guān)于AM所在的直線(xiàn)對(duì)稱(chēng),連接AE,ME,延長(zhǎng)CB到點(diǎn)F,使得BF=DM,連接EF,AF.
(1)依題意補(bǔ)全圖1;
(2)若DM=1,求線(xiàn)段EF的長(zhǎng);
(3)當(dāng)點(diǎn)M在CD邊上運(yùn)動(dòng)時(shí),能使△AEF為等腰三角形,直接寫(xiě)出此時(shí)tan∠DAM的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com