【題目】如圖,⊙O是△ABC的外接圓,AB是⊙O的直徑,AB=8.
(1)利用尺規(guī),作∠CAB的平分線,交⊙O于點D;(保留作圖痕跡,不寫作法)
(2)在(1)的條件下,連接CD,OD,若AC=CD,求∠B的度數(shù);
(3)在(2)的條件下,OD交BC于點E.求出由線段ED,BE,所圍成區(qū)域的面積.(其中表示劣弧,結(jié)果保留π和根號)
【答案】(1)作圖見解析;(2)30°;(3).
【解析】
試題分析:(1)作AP平分∠CAB交⊙O于D;
(2)由等腰三角形性質(zhì)得到∠CAD=∠ADC.又由∠ADC=∠B,得到∠CAD=∠B.
再根據(jù)角平分線定義得到∠CAD=∠DAB=∠B.由于直徑所對圓周角為90°,得到∠ACB=90°,從而得到∠B的度數(shù);
(3)先得到△OEB是30°角的直角三角形,從而得出OE,EB的長,然后把不規(guī)則圖形面積轉(zhuǎn)化為扇形BOD的面積減去Rt△OEB的面積求解.
試題解析:(1)如圖,AP即為所求的∠CAB的平分線;
(2)∵AC=CD,∴∠CAD=∠ADC.又∵∠ADC=∠B,∴∠CAD=∠B.
∵AD平分∠CAB,∴∠CAD=∠DAB=∠B.
∵AB是⊙O的直徑,∴∠ACB=90°,∴∠CAB+∠B=90°,∴3∠B=90° ,∴∠B=30°;
(3)由(2)知,∠DAB=30°.又∵∠DOB=2∠DAB,∴∠EOB=60°,∴∠OEB=90°.
在Rt△OEB中,∵OB=4,∠OBE=30°,∴OE=2,BE=,∴S===.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當今,青少年用電腦手機過多,視力水平下降已引起了全社會的關(guān)注,某校為了解八年級1000名學(xué)生的視力情況,從中抽查了150名學(xué)生的視力情況,通過數(shù)據(jù)處理,得到如下的頻數(shù)分布表.解答下列問題:
視力范圍分組 | 組中值 | 頻數(shù) |
3.95≤x<4.25 | 4.1 | 20 |
4.25≤x<4.55 | 4.4 | 10 |
4.55≤x<4.85 | 4.7 | 30 |
4.85≤x<5.15 | 5.0 | 60 |
5.15≤x<5.45 | 5.3 | 30 |
合計 | 150 |
(1)分別指出參加抽測學(xué)生的視力的眾數(shù)、中位數(shù)所在的范圍;
(2)若視力為4.85以上(含4.85)為正常,試估計該校八年級學(xué)生視力正常的人數(shù)約為多少?
(3)根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)時,統(tǒng)計中常用各組的組中值代表各組的實際數(shù)據(jù),把各組的頻數(shù)相應(yīng)組中的權(quán).請你估計該校八年級學(xué)生的平均視力是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A,B,C三點在同一條數(shù)軸上.
(1)、若點A,B表示的數(shù)分別為-4,2,且BC=AB,則點C表示的數(shù)是 ;
(2)、點A,B表示的數(shù)分別為m,n,且m<n.
①若AC-AB=2,求點C表示的數(shù)(用含m,n的式子表示);
②點D是這條數(shù)軸上的一個動點,且點D在點A的右側(cè)(不與點B重合),當AD=2AC,BC=BD,求線段AD的長(用含m,n的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=8,E是邊AB上一點,且AE=AB.⊙O經(jīng)過點E,與邊CD所在直線相切于點G(∠GEB為銳角),與邊AB所在直線交于另一點F,且EG:EF=.當邊AD或BC所在的直線與⊙O相切時,AB的長是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了了解初三年級1000名學(xué)生的身體健康情況,從該年級隨機抽取了若干名學(xué)生,將他們按體重(均為整數(shù),單位:kg)分成五組(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依據(jù)統(tǒng)計數(shù)據(jù)繪制了如下兩幅尚不完整的統(tǒng)計圖.
解答下列問題:
(1)這次抽樣調(diào)查的樣本容量是 ,并補全頻數(shù)分布直方圖;
(2)C組學(xué)生的頻率為 ,在扇形統(tǒng)計圖中D組的圓心角是 度;
(3)請你估計該校初三年級體重超過60kg的學(xué)生大約有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把矩形ABCD沿EF翻折,點B恰好落在AD邊的B′處,若AE=1,DE=3,∠EFB′=60°,則矩形ABCD的面積是( )
A.4B.8C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的對角線相交于點O,DE∥AC,CE∥BD.
(1)求證:四邊形OCED是菱形.
(2)當∠ACB=30°,菱形OCED的面積為,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在學(xué)習(xí)了“求簡單隨機事件發(fā)生的可能性大小”知識后,小敏,小聰,小麗三人分別編寫了一道有關(guān)隨機事件的試題并進行了解答.小敏,小聰,小麗編寫的試題分別是下面的(1)(2)(3).
(1)一個不透明的盒子里裝有4個紅球,2個白球,除顏色外其它都相同,攪均后,從中隨意摸出一個球,摸出紅球的可能性是多少?解:P(摸出一個紅球)=.
(2)口袋里裝有如圖所示的1角硬幣2枚、5角硬幣2枚、1 元硬幣1枚.攪均后,從中隨意摸出一枚硬幣,摸出1角硬幣的可能性是多少?解:P(摸出1角的硬幣)=.
(3)如圖,是一個轉(zhuǎn)盤,盤面上有5個全等的扇形區(qū)域,每個區(qū)域顯示有不同的顏色,輕輕轉(zhuǎn)動轉(zhuǎn)盤,當轉(zhuǎn)盤停止后,指針對準紅色區(qū)域的可能性是多少?解:P(指針對準紅色區(qū)域)=.
問題:根據(jù)以上材料回答問題:小敏,小聰,小麗三人中,誰編寫的試題及解答是正確的,并簡要說明其他兩人所編試題或解答的不足之處.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=4,∠BAC=120°,AD為BC邊上的高,點P從點B以每秒個單位長度的速度向終點C運動,同時點Q從點C以每秒1個單位長度的速度向終點A運動,其中一個點到達終點時,兩點同時停止.
(1)求BC的長;
(2)設(shè)△PDQ的面積為S,點P的運動時間為t秒,求S與t的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(3)在動點P、Q的運動過程中,是否存在PD=PQ,若存在,求出△PDQ的周長,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com