【題目】如圖,直線軸、軸相交于兩點(diǎn),拋物線過點(diǎn),且與軸另一個(gè)交點(diǎn)為,以、為邊作矩形,交拋物線于點(diǎn)

1)求拋物線的解析式以及點(diǎn)的坐標(biāo);

2)已知直線于點(diǎn),交于點(diǎn),交于點(diǎn),交拋物線(上方部分)于點(diǎn),請用含的代數(shù)式表示的長;

3)在(2)的條件下,連接,若相似,求的值.

【答案】1,的坐標(biāo)為;(2;(3的值為1

【解析】

1)先求出點(diǎn)B、C的坐標(biāo),再利用待定系數(shù)法可求出拋物線的解析式,然后令即可求出點(diǎn)A的坐標(biāo);

2)先利用待定系數(shù)法求出直線AC的解析式,從而可得點(diǎn)M的坐標(biāo),再根據(jù)拋物線可得點(diǎn)P的坐標(biāo),然后根據(jù)即可得;

3)先根據(jù)點(diǎn)的坐標(biāo)、正方形的性質(zhì)分別求出AE、ME、CF、PF的長,再根據(jù)相似三角形的性質(zhì)即可得.

1)對于直線

當(dāng)時(shí),,解得,則點(diǎn)的坐標(biāo)為

當(dāng)時(shí),,則點(diǎn)的坐標(biāo)為

將點(diǎn)B、C的坐標(biāo)代入拋物線的解析式得:,解得

則拋物線的解析式為

,解得

∴點(diǎn)的坐標(biāo)為;

2)設(shè)直線的解析式為

,代入得,解得

∴直線的解析式為

∵點(diǎn)的橫坐標(biāo)為,點(diǎn)

∴點(diǎn)的坐標(biāo)為

∵點(diǎn)的橫坐標(biāo)為,點(diǎn)在拋物線

∴點(diǎn)的坐標(biāo)為

;

3)由題意得,,,

根據(jù)相似三角形的性質(zhì),分以下兩種情況:

①若,則

②若,則

綜上,的值為1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,于點(diǎn)于點(diǎn),連接并延長交于點(diǎn),交的延長線于點(diǎn),連接,若,則___________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線ykx+b經(jīng)過點(diǎn)A02),B(﹣4,0)和拋物線yx2

1)求直線的解析式;

2)將拋物線yx2沿著x軸向右平移,平移后的拋物線對稱軸左側(cè)部分與y軸交于點(diǎn)C,對稱軸右側(cè)部分拋物線與直線ykx+b交于點(diǎn)D,連接CD,當(dāng)CDx軸時(shí),求平移后得到的拋物線的解析式;

3)在(2)的條件下,平移后得到的拋物線的對稱軸與x軸交于點(diǎn)E,P為該拋物線上一動(dòng)點(diǎn),過點(diǎn)P作拋物線對稱軸的垂線,垂足為Q,是否存在這樣的點(diǎn)P,使以點(diǎn)E,P,Q為頂點(diǎn)的三角形與AOB相似?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線yx與反比例函數(shù)yx0)的圖象相交于點(diǎn)D,點(diǎn)A為直線yx上一點(diǎn),過點(diǎn)AACx軸于點(diǎn)C,交反比例函數(shù)yx0)的圖象于點(diǎn)B,連接BD

1)若點(diǎn)B的坐標(biāo)為(8,2),則k   ,點(diǎn)D的坐標(biāo)為   

2)若AB2BC,且△OAC的面積為18,求k的值及△ABD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于二次函數(shù),下列說法正確的個(gè)數(shù)是( 。

①對于任何滿足條件的,該二次函數(shù)的圖象都經(jīng)過點(diǎn)兩點(diǎn);

②若該函數(shù)圖象的對稱軸為直線,則必有

③當(dāng)時(shí),的增大而增大;

④若是函數(shù)圖象上的兩點(diǎn),如果總成立,則

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在中,以邊為直徑的于點(diǎn),在劣弧上取一點(diǎn)使,延長依次交于點(diǎn),交

1)求證:

2)若,的直徑等于10,,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在正方形ABCD中,GCD邊中點(diǎn),連接AG并延長交BC邊的延長線于E點(diǎn),對角線BDAGF點(diǎn).已知FG2,則線段AE的長度為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)數(shù)學(xué)理解:如圖①,是等腰直角三角形,過斜邊的中點(diǎn)作正方形,分別交于點(diǎn),,求證:;

2)問題解決:如圖②,在任意直角內(nèi),找一點(diǎn),過點(diǎn)作正方形,分別交,于點(diǎn),若,求的度數(shù);

3)聯(lián)系拓廣;如圖③,在(2)的條件下,分別延長,,交于點(diǎn),,若,,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB2BC10,E、F分別在邊BC,AD上,BEDF.將△ABE△CDF分別沿著AE,CF翻折后得到△AGE△CHF.若AG、CH分別平分∠EAD∠FCB,則GH長為(

A.3B.4C.5D.7

查看答案和解析>>

同步練習(xí)冊答案