【題目】如圖,△ABC中,∠C=90°,AD平分∠BAC,AD=4,CD=2,AC=2,△ABD的面積是_______________.

【答案】4

【解析】

過點DDE⊥ABE,由直角三角形中一直角邊等于斜邊的一半,那么這條直角邊所對的角等于30,得到∠CAD=30,從而∠B=30,再根據(jù)直角三角形中30角所對的直角邊等于斜邊的一半,得到AB=4,由AD平分∠BAC,可知DE,從而求得ABD的面積.

解:過點DDE⊥ABE,

∵∠C=90,CD=2,AD=4,

∴∠CAD=30,

∵AD平分∠BAC,DEAB,

∴∠CAB=60,CD=DE=2,

∴∠B=30,

AB=2AC=2×2=4,

SABD=AB·DE=×4×2=4.

故答案為:4.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,河壩橫斷面背水坡AB的坡角是45°,背水坡AB長度為20 米,現(xiàn)在為加固堤壩,將斜坡AB改成坡度為1:2的斜坡AD【備注:AC⊥CB】
(1)求加固部分即△ABD的橫截面的面積;
(2)若該堤壩的長度為100米,某工程隊承包了這一加固的土石方工程,為搶在在汛期到來之際提前完成這一工程,現(xiàn)在每天完成的土方比原計劃增加25%,這樣實際比原計劃提前10天完成了,求原計劃每天完成的土方.【提示土石方=橫截面x堤壩長度】

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是⊙O的內接四邊形,∠B=135°,則∠AOC的度數(shù)為(
A.45°
B.90°
C.100°
D.135°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將ABC沿BC邊上的中線AD平移到A'B'C'的位置,已知ABC的面積為9,陰影部分三角形的面積為4.若AA'=1,則A'D等于( 。

A. 2 B. 3 C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC為等邊三角形,P為BC上一點,△APQ為等邊三角形,PQ與AC相交于點M,則下列結論中正確的是( ) ①AB∥CQ;②∠ACQ=60°;③AP2=AMAC;④若BP=PC,則PQ⊥AC.

A.①②
B.①③
C.①②③
D.①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為配合全市“禁止焚燒秸稈”工作,某學校舉行了“禁止焚燒秸稈,保護環(huán)境,從我做起”為主題的演講比賽.賽后組委會整理參賽同學的成績,并制作了如下不完整的頻數(shù)分布表和頻數(shù)分布直方圖.

分數(shù)段(分數(shù)為x分)

頻數(shù)

百分比

60≤x<70

8

20%

70≤x<80

a

30%

80≤x≤90

16

b%

90≤x<100

4

10%

請根據(jù)圖表提供的信息,解答下列問題:
(1)表中的a= , b=;請補全頻數(shù)分布直方圖;
(2)若用扇形統(tǒng)計圖來描述成績分布情況,則分數(shù)段70≤x<80對應扇形的圓心角的度數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ADBC,垂足為D,點EAB上,EFBC,垂足為F

(1)ADEF平行嗎?為什么?

(2)如果∠1=∠2,且∠3115°,求∠BAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,AD是△ABC的中線,∠ACE是△ABC的外角.
(1)讀下列語句,尺規(guī)作圖,保留作圖痕跡. ①作∠ACE的角平分線,交BA延長線于點F;
②過點D作DH∥AC,交AB于點H,連接CH.
(2)依據(jù)以上條件,解答下列問題. ①與△AHD面積相等的三角形是;
②若∠B=40°,∠F=30°,求∠BAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某教育網(wǎng)站對下載資源規(guī)定如下:若注冊VIP用戶,則下載每份資源收元,另外每年收500元的VIP會員費,若注冊普通用戶,則下載每份資源收元,不收其它費用

分別寫出注冊VIP用戶的收費和注冊普通用戶與下載數(shù)量之間的函數(shù)關系式

某學校每年要下載1500份資源,那么注冊哪種用戶比較合算?

一年內下載多少份資源是兩種用戶收費一樣?

查看答案和解析>>

同步練習冊答案