【題目】一個(gè)矩形ABCD的較短邊長為2.

(1)如圖①,若沿長邊對(duì)折后得到的矩形與原矩形相似,求它的另一邊長;

(2)如圖②,已知矩形ABCD的另一邊長為4,剪去一個(gè)矩形ABEF后,余下的矩形EFDC與原矩形相似,求余下矩形EFDC的面積.

【答案】(1);(2)2.

【解析】

(1)設(shè)它的另一邊長為2x,則AM=DM=x,根據(jù)相似多邊形的性質(zhì)得=,即=,然后解方程求出x則可得到矩形ABCD的另一邊長;

(2)設(shè)DF=a,根據(jù)相似多邊形的性質(zhì)得=,即=,然后利用比例性質(zhì)求出DF,再利用矩形面積公式計(jì)算矩形EFDC的面積.

解:由已知得,,

沿長邊對(duì)折后得到的矩形與原矩形相似,

矩形與矩形相似,,

,即,

,即它的另一邊長為

矩形與原矩形相似,

,,

,

矩形的面積

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)你站在博物館的展覽廳中時(shí),你知道站在何處觀賞最理想嗎?如圖,設(shè)墻壁上的展品最高點(diǎn)P距地面2.5米,最低點(diǎn)Q距地面2米,觀賞者的眼睛F距地面1.6米,當(dāng)視角∠PEQ最大時(shí),站在此處觀賞最理想,則此時(shí)E到墻壁的距離為( )米.

A. 1 B. 0.6 C. 0.5 D. 0.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A、D、C、F在同一條直線上,AD=CF,AB=DE,BC=EF.

(1)求證:ΔABC△DEF;

(2)若∠A=55°,B=88°,求∠F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC 中,ABAC,BOCO 分別平分∠ABC、∠ACB,DE 經(jīng)過點(diǎn) O, DEBC,DE 分別交 AB、AC D、E,則圖中等腰三角形的個(gè)數(shù)為( )

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,點(diǎn)、分別是、的中點(diǎn),過點(diǎn)交線段的延長線于點(diǎn),取的中點(diǎn),聯(lián)結(jié),交于點(diǎn)

求證:四邊形是菱形;

求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)A1,n1),點(diǎn)B2,n2)在一次函數(shù)y1=k1x+b1圖像上:點(diǎn)C3n3),點(diǎn)D4,n4)在一次函數(shù)y2=k2x+b2圖像上,y1 y2圖像交點(diǎn)坐標(biāo)是(m,n.n4n1n3n2,則下列說法:①k10,k20;②k10k20;③1m3;④2m4,正確的是____(填序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠C72°,∠B=∠D90°,E,F分別是DCBC上的點(diǎn),當(dāng)AEF的周長最小時(shí),∠EAF的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD是△ABC的中線,EF分別是ADAD延長線上的點(diǎn),且DE=DF,連結(jié)BF,CE.下列說法①△BDF≌△CDE;②△ABD和△ACD面積相等;③BFCE;④CE=BF.其中正確的有( 。

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,已知正方形ABCD,EAD上一點(diǎn),FBC上一點(diǎn),GAB上一點(diǎn),HCD上一點(diǎn),線段EF、GH交于點(diǎn)O,EOH=C,求證:EF=GH;

(2)如圖2,若將正方形ABCD”改為菱形ABCD”,其他條件不變,探索線段EF與線段GH的關(guān)系并加以證明;

(3)如圖3,若將正方形ABCD”改為矩形ABCD”,且AD=mAB,其他條件不變,探索線段EF與線段GH的關(guān)系并加以證明;

附加題:根據(jù)前面的探究,你能否將本題推廣到一般的平行四邊形情況?若能,寫出推廣命題,畫出圖形,并證明,若不能,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案