【題目】若等腰三角形的一個內(nèi)角是則它的另外兩個內(nèi)角的度數(shù)是__________,若等腰三角形的一個內(nèi)角是,則它的另外兩個內(nèi)角的度數(shù)__________

【答案】50°、50°或20°、80° 40°、40°

【解析】

等腰三角形中必有兩個角相等和三角形內(nèi)角和為180°,80°的角可作底角,也可作頂角,故分兩種情況進行計算即可;當?shù)捉菫?/span>100°時,等腰三角形的另一個底角不能為100°,所以100°為等腰三角形的頂角,剩下兩個角為底角為40°,40°

解:①當80°的角是頂角,則兩個底角是50°、50°;

②當80°的角是底角,則頂角是20°

∵三角形內(nèi)角和為180°,

100°只能為頂角,

∴剩下兩個角為底角,且他們之和為80°,

∴另外兩個內(nèi)角的度數(shù)分別為40°,40°

故答案是50°,50°20°、80°;40°,40°

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】探究:如圖①,在矩形ABCD中,以點A為直角頂點作Rt△AEF,連結(jié)BEDF,直線DF交直線BE于點G,DGAB交于點H,且

(1)求證:△ABE∽△ADF

(2)求證:DGBE;

拓展:如圖②,在ABCD中,以點A為頂點作∠EAF=∠BAD,連結(jié)BEDF,直線DF交直線BE于點G,且,若∠BCD=130°,則∠EGD的大小為   度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CDAB于點G,點FCD上一點,且滿足 ,連接AF并延長交⊙O于點E,連接AD、DE,若CF=2,AF=3,給出下列結(jié)論:①△ADF∽△AED;CD=8;tanE=;SADE=6,其中正確的有個數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=AC,B=30°,ADAB,交BC于點D,AD=4,則BC的長為( )

A. 8 B. 4 C. 12 D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB=AC,AD=AE,,若要得到△ABD≌△ACE,必須添加一個條件,則下列所添條件不恰當?shù)氖?( ).

A. BD=CEB. ∠ABD=∠ACEC. ∠BAD=∠CAED. ∠BAC=∠DAE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知反比例函數(shù)y=﹣,下列結(jié)論:圖象必經(jīng)過點(﹣3,1);圖象在第二,四象限內(nèi);yx的增大而增大;x>﹣1時,y>3.其中錯誤的結(jié)論有( 。

A. ①④ B. ②③ C. ②④ D. ③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,面積為4的正方形OABC的頂點O與坐標原點重合,邊OA、OC分別在x軸、y軸的正半軸上,點B、P都在函數(shù)y=(x>0)的圖象上,過動點P分別作軸x、y軸的平行線,交y軸、x軸于點D、E.設矩形PDOE與正方形OABC重疊部分圖形的面積為S,點P的橫坐標為m.

(1)求k的值;

(2)用含m的代數(shù)式表示CD的長;

(3)求Sm之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖,在ABC中,∠B45°,點DBC邊的中點,DEBC于點D,交AB于點E,連接CE

1)求∠AEC的度數(shù);

2)請你判斷AEBE、AC三條線段之間的等量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩車分別從A、B兩地同時出發(fā),甲車勻速前往B地,到達B地立即以另一速度按原路勻速返回到A地;乙車勻速前往A地,設甲、乙兩車距A地的路程為y(千米),甲車行駛的時間為x(時),yx之間的函數(shù)圖象如圖所示

1)求甲車從A地到達B地的行駛時間;

2)求甲車返回時yx之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

3)求乙車到達A地時甲車距A地的路程.

查看答案和解析>>

同步練習冊答案