【題目】如圖,已知AB是⊙O的弦,點C是弧AB的中點,D是弦AB上一動點,且不與A、B重合,CD的延長線交于⊙O點E,連接AE、BE,過點A作AF⊥BC,垂足為F,∠ABC=30°.
(1)求證:AF是⊙O的切線;
(2)若BC=6,CD=3,則DE的長為 ;
(3)當點D在弦AB上運動時,的值是否發(fā)生變化?如果變化,請寫出其變化范圍;如果不變,請求出其值.
【答案】(1)見解析;(2)9;(3)不變,
【解析】
(1)如圖1中,連接AC,OC,OA.想辦法證明OA∥BF即可解決問題;
(2)證明△BCD∽△ECB,推出,求出CE即可解決問題;
(3)如圖2中,連接AC,OC,OC交AB于H,作AN∥EC交BE的延長線于N.證明△ACE∽△ABN,推出可得結論.
(1)證明:如圖1中,連接AC,OC,OA,
∵∠AOC=2∠ABC=60°,OA=OC,
∴△AOC是等邊三角形,
∴∠CAO=60°,
∵,
∴AB⊥OC,
∴∠OAD=∠OAC=30°,
∵∠ABC=30°,
∴∠ABC=∠OAD,
∴OA∥BF,
∵AF⊥BF,
∴OA⊥AF,
∴AF是⊙O的切線;
(2)解:∵,
∴∠CBD=∠BEC,
∵∠BCD=∠BCE,
∴△BCD∽△ECB,
∴,
∴,
∴EC=12,
∴DE=EC﹣CD=12﹣3=9,
故答案為:9;
(3)解:結論:=,的值不變.
理由:如圖2中,連接AC,OC,OC交AB于H,作AN∥EC交BE的延長線于N.
∵,
∴OC⊥AB,CB=CA,
∴BH=AH=AB,
∵∠ABC=30°,
∴BH=BC,
∴AC=AB,
∵CE∥AN,
∴∠N=∠CEB=30°,∠EAN=∠AEC=∠ABC=30°,
∴∠CEA=∠ABC=30°,∠EAN=∠N,
∴∠N=∠AEC,AE=EN,
∵∠ACE=∠ABN,
∴△ACE∽△ABN,
∴=,
∴=,
∴的值不變.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a>0)的圖象與x軸交于A,B兩點,與y軸正半軸交于點C,它的對稱軸為直線x=﹣1.則下列選項中正確的是( 。
A.abc<0B.4ac﹣b2>0
C.c﹣a>0D.當x=﹣n2﹣2(n為實數(shù))時,y≥c
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形中,、分別為、的中點,連接,交于點,將沿對折,得到,延長交延長線于點,下列4個結論:①;②;③;④;正確的結論有__________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知等邊△OA1B1,頂點A1在雙曲線y=(x>0)上,點B1的坐標為(2,0).過B1作B1A2∥OA1交雙曲線于點A2,過A2作A2B2∥A1B1交x軸于點B2,得到第二個等邊△B1A2B2;過B2作B2A3∥B1A2交雙曲線于點A3,過A3作A3B3∥A2B2交x軸于點B3,得到第三個等邊△B2A3B3;以此類推,…,則點B6的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】新學期復學后,學校為了保障學生的出行安全,隨機調查了部分學生的上學方式(每位學生從乘私家車、坐公交、騎車和步行4種方式中限選1項),根據(jù)調查數(shù)據(jù)制作了如圖所示的不完整的統(tǒng)計表和扇形統(tǒng)計圖.
(1)本次學校共調查了 名學生, , ;
(2)求扇形統(tǒng)計圖中“步行”對應扇形的圓心角;
(3)甲、乙兩位同學住在同一小區(qū),且都坐公交車上學,有、、三路公交車途徑該小區(qū)和學校,假設甲、乙兩位同學坐這三路公交車是等可能的,請用列表或畫樹狀圖的方法求某日甲、乙兩位同學坐同一路公交車到學校的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠MON=30°,點A1在ON上,點C1在OM上,OA1=A1C1=2,C1B1⊥ON于點B1,以A1B1和B1C1為鄰邊作矩形A1B1C1D1,點A1,A2關于點B對稱,A2C2∥A1C1交OM于點C2,C2B2⊥ON于點B2,以A2B2和B2C2為鄰邊作矩形A2B2C2D2,連接D1D2,點A2,A3關于點B2對稱,A3C3∥A2C2交OM于點C3,C3B3⊥ON于點B3,以A3B3和B3C3為鄰邊作矩形A3B3C3D3,連接D2D3,……依此規(guī)律繼續(xù)下去,則DnDn+1=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,C是⊙O上一點(不與A、B重合),D為的中點,過點D作弦DE⊥AB于F,P是BA延長線上一點,且∠PEA=∠B.
(1)求證:PE是⊙O的切線;
(2)連接CA與DE相交于點G,CA的延長線交PE于H,求證:HE=HG;
(3)若tan∠P=,試求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某社區(qū)計劃對1200m2的區(qū)域進行綠化,經投標由甲、乙兩個施工隊來完成,已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化面積的2倍,并且甲、乙兩隊在分別獨立完成面積為300m2區(qū)域的綠化時,甲隊比乙隊少用3天.
⑴ 甲、乙兩施工隊每天分別能完成綠化的面積是多少?
⑵ 設先由甲隊施工x天,再由乙隊施工y天,剛好完成綠化任務,求y關于x的函數(shù)關系式.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com