【題目】已知,在長(zhǎng)方形中,,,點(diǎn),分別是邊,上的點(diǎn),連接,,.
(1)如圖①,當(dāng)時(shí),試說(shuō)明是直角三角形;
(2)如圖②,若點(diǎn)是邊的中點(diǎn),平分,求的長(zhǎng).
【答案】(1)見(jiàn)解析;(2).
【解析】
(1)根據(jù),,可求出AE、BF的長(zhǎng),利用勾股定理可分別求出DE、EF、DF的長(zhǎng),根據(jù)勾股定理逆定理即可得答案;
(2)如圖,作于,利用AAS可證明,可得,,根據(jù)點(diǎn)E為AB中點(diǎn)可得EB=4,即可證明EH=EB,利用HL可證明,可得BF=HF,設(shè),可得,DF=6+x,在中,利用勾股定理列方程求出x的值即可得答案.
(1)∵,,,
∴,,BF=4,
∵四邊形是長(zhǎng)方形,
∴.
在中,,
在中,,
在中,,
∴,
∴是直角三角形,且.
(2)如圖,作于,
∴,
∵平分,
∴,
在與中,,
∴,
∴,,
∵點(diǎn)E為AB中點(diǎn),
∴BE=AE=4,
∴
在與中,,
∴,
∴,
設(shè),則,,
∴,
∴在中,,
∴,
∴,即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)y=kx+b的圖象過(guò)A(1,1)和B(2,﹣1)
(1)求一次函數(shù)y=kx+b的表達(dá)式;
(2)求直線y=kx+b與坐標(biāo)軸圍成的三角形的面積;
(3)將一次函數(shù)y=kx+b的圖象沿y軸向下平移3個(gè)單位,則平移后的函數(shù)表達(dá)式為 ,再向右平移1個(gè)單位,則平移后的函數(shù)表達(dá)式為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+2ax+3a2+3(其中x是自變量),當(dāng)x≥2時(shí),y隨x的增大而增大,且2≤x≤1時(shí),y的最大值為9,則a的值為
A. 1或2 B. 或
C. D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為了測(cè)量河對(duì)岸l1上兩棵古樹(shù)A、B之間的距離,某數(shù)學(xué)興趣小組在河這邊沿著與AB平行的直線l2上取C、D兩點(diǎn),測(cè)得∠ACB=15°,∠ACD=45°,若l1、l2之間的距離為50m,則A、B之間的距離為( )
A. 50m B. 25m C. (50﹣)m D. (50﹣25)m
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=∠BCD=90°,點(diǎn)E為BC的中點(diǎn),AE⊥DE.
(1)求證:△ABE∽△ECD;
(2)求證:AE2=AB·AD;
(3)若AB=1,CD=4,求線段AD,DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,,的平分線與的垂直平分線交于點(diǎn),的延長(zhǎng)線于點(diǎn),于點(diǎn).
(1)求證:;
(2)求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某村計(jì)劃建造如圖所示的矩形蔬菜溫室,要求長(zhǎng)與寬的比為2:1.在溫室內(nèi),沿前側(cè)內(nèi)墻保留3m寬的空地,其它三側(cè)內(nèi)墻各保留1m寬的通道.當(dāng)矩形溫室的長(zhǎng)與寬各為多少時(shí),蔬菜種植區(qū)域的面積是288m2?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】邊長(zhǎng)為的正方形ABCD與直角三角板如圖放置,延長(zhǎng)CB與三角板的一條直角邊相交于點(diǎn)E,則四邊形AECF的面積為________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com