【題目】如圖,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,點(diǎn)D是BC上一動(dòng)點(diǎn),連結(jié)AD,將△ACD沿AD折疊,點(diǎn)C落在點(diǎn)C′,連結(jié)C′D交AB于點(diǎn)E,連結(jié)BC′.當(dāng)△BC′D是直角三角形時(shí),DE的長為

【答案】
【解析】解:如圖1所示;點(diǎn)E與點(diǎn)C′重合時(shí).
在Rt△ABC中,BC= =4.
由翻折的性質(zhì)可知;AE=AC=3、DC=DE.則EB=2.
設(shè)DC=ED=x,則BD=4﹣x.
在Rt△DBE中,DE2+BE2=DB2 , 即x2+22=(4﹣x)2
解得:x=
∴DE=
如圖2所示:∠EDB=90時(shí).

由翻折的性質(zhì)可知:AC=AC′,∠C=∠C′=90°.
∵∠C=∠C′=∠CDC′=90°,
∴四邊形ACDC′為矩形.
又∵AC=AC′,
∴四邊形ACDC′為正方形.
∴CD=AC=3.
∴DB=BC﹣DC=4﹣3=1.
∵DE∥AC,
∴△BDE∽△BCA.
,即
解得:DE=
點(diǎn)D在CB上運(yùn)動(dòng),∠DBC′<90°,故∠DBC′不可能為直角.
故答案為:
點(diǎn)E與點(diǎn)C′重合時(shí).在Rt△ABC中,由勾股定理可求得BC=4,由翻折的性質(zhì)可知:AE=AC=3、DC=DE.則EB=2.設(shè)DC=ED=x,則BD=4﹣x.在Rt△DBE中,依據(jù)勾股定理列方程求解即可;當(dāng)∠EDB=90時(shí).由翻折的性質(zhì)可知:AC=AC′,∠C=∠C′=90°,然后證明四邊形ACDC′為正方形,從而求得DB=1,然后證明DE∥AC,△BDE∽△BCA,依據(jù)相似三角形的性質(zhì)可求得DE=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:把函數(shù)y=bx+a和函數(shù)y=ax+b(其中a,b是常數(shù),且a≠0,b≠0)稱為一對(duì)交換函數(shù),其中一個(gè)函數(shù)是另一個(gè)函數(shù)的交換函數(shù).比如,函數(shù)y=4x+1是函數(shù)y=x+4的交換函數(shù),等等.

(1)直接寫出函數(shù)y=2x+1的交換函數(shù);_________________;并直接寫出這對(duì)交換函數(shù)和x軸所圍圖形的面積為_____________________________;

(2)若一次函數(shù)y=ax+2a和其交換函數(shù)與x軸所圍圖形的面積為3,求a的值.

(3)如圖,在平面直角坐標(biāo)xOy中,矩形OABC中,點(diǎn)C(0, ),M、N分別是線段OC、AB的中點(diǎn),將△ABD沿著折痕AD翻折,使點(diǎn)B的落點(diǎn)E恰好落在線段MN的中點(diǎn),點(diǎn)F是線段BC的中點(diǎn),連接EF,若一次函數(shù)與線段EF始終都有交點(diǎn),則m的取值范圍為_____________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列平面直角坐標(biāo)系中畫出函數(shù)y1=-x+3,y2=3x-4的圖象.觀察圖象,回答下列問題:

(1)當(dāng)x取何值時(shí),y1=y(tǒng)2?

(2)當(dāng)x取何值時(shí),y1>y2?

(3)當(dāng)x取何值時(shí),y1<y2?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1點(diǎn)O為直線AB上一點(diǎn),過O點(diǎn)作射線OC,使BOC=120°,將一直角三角板的直角頂點(diǎn)放在點(diǎn)O處,一邊OM在射線OB上另一邊ON在直線AB的下方

1如圖2,將圖1中的三角板繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)使邊OM在BOC的內(nèi)部,且OM恰好平分BOC此時(shí)AOM= 度;

2如圖3繼續(xù)將圖2中的三角板繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn),使得ON在AOC的內(nèi)部試探究AOM與NOC之間滿足什么等量關(guān)系并說明理由;

3將圖1中的三角板繞點(diǎn)O以每秒10°的速度沿逆時(shí)針方向旋轉(zhuǎn)一周在旋轉(zhuǎn)的過程中,若直線ON恰好平分AOC則此時(shí)三角板繞點(diǎn)O旋轉(zhuǎn)的時(shí)間是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:(1)2x-5=3x+2;

(2)3(x+2)-2(2x-3)=12;

(3) =1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著柴靜紀(jì)錄片《穹頂之下》的播出,全社會(huì)對(duì)空氣污染問題越來越重視,空氣凈化器的銷量也大增,商社電器從廠家購進(jìn)了A,B兩種型號(hào)的空氣凈化器,已知一臺(tái)A型空氣凈化器的進(jìn)價(jià)比一臺(tái)B型空氣凈化器的進(jìn)價(jià)多300元,用7500元購進(jìn)A型空氣凈化器和用6000元購進(jìn)B型空氣凈化器的臺(tái)數(shù)相同.
(1)求一臺(tái)A型空氣凈化器和一臺(tái)B型空氣凈化器的進(jìn)價(jià)各為多少元?
(2)在銷售過程中,A型空氣凈化器因?yàn)閮艋芰?qiáng),噪音小而更受消費(fèi)者的歡迎.為了增大B型空氣凈化器的銷量,商社電器決定對(duì)B型空氣凈化器進(jìn)行降價(jià)銷售,經(jīng)市場調(diào)查,當(dāng)B型空氣凈化器的售價(jià)為1800元時(shí),每天可賣出4臺(tái),在此基礎(chǔ)上,售價(jià)每降低50元,每天將多售出1臺(tái),如果每天商社電器銷售B型空氣凈化器的利潤為3200元,請(qǐng)問商社電器應(yīng)將B型空氣凈化器的售價(jià)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與B、C重合),以AD為邊在AD的右側(cè)作正方形ADEF,連接CF.
(1)觀察猜想:如圖(1),當(dāng)點(diǎn)D在線段BC上時(shí),

①BC與CF的位置關(guān)系是:;
②BC、CD、CF之間的數(shù)量關(guān)系為:(將結(jié)論直接寫在橫線上)
(2)數(shù)學(xué)思考:如圖(2),當(dāng)點(diǎn)D在線段CB的延長線上時(shí),上述①、②中的結(jié)論是否仍然成立?若成立,請(qǐng)給予證明,若不成立,請(qǐng)你寫出正確結(jié)論再給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016年11月13日巴基斯坦瓜達(dá)爾港正式開港,此港成為我國“一帶一路”必展戰(zhàn)略上的一顆璀璨的明星,某大型遠(yuǎn)洋運(yùn)輸集團(tuán)有三種型號(hào)的遠(yuǎn)洋貨輪,每種型號(hào)的貨輪載重量和盈利情況如下表所示:

平均貨輪載重的噸數(shù)(萬噸)

10

5

7.5

平均每噸貨物可獲例如(百元)

5

3.6

4


(1)若用乙、丙兩種型號(hào)的貨輪共8艘,將55萬噸的貨物運(yùn)送到瓜達(dá)爾港,問乙、丙兩種型號(hào)的貨輪各多少艘?
(2)集團(tuán)計(jì)劃未來用三種型號(hào)的貨輪共20艘裝運(yùn)180萬噸的貨物到國內(nèi),并且乙、丙兩種型號(hào)的貨輪數(shù)量之和不超過甲型貨輪的數(shù)量,如果設(shè)丙型貨輪有m艘,則甲型貨輪有艘,乙型貨輪有艘(用含有m的式子表示),那么如何安排裝運(yùn),可使集團(tuán)獲得最大利潤?最大利潤的多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB=AC,AB的垂直平分線交AC于點(diǎn)N,交BC的延長線于點(diǎn)M,A=40°.

(1)求∠NMB的大小.

(2)如果將(1)中的∠A的度數(shù)改為70°,其余條件不變,再求∠NMB的大小.

(3)你認(rèn)為存在什么樣的規(guī)律?試用一句話說明.(請(qǐng)同學(xué)們自己畫圖)

(4)將(1)中的∠A改為鈍角,對(duì)這個(gè)問題規(guī)律的認(rèn)識(shí)是否需要加以修改?

查看答案和解析>>

同步練習(xí)冊(cè)答案