【題目】如圖,點D,E分別在AC,AB上,BD與CE相交于點O,已知∠B=∠C,現(xiàn)添加下面的哪一個條件后,仍不能判定△ABD≌△ACE的是( 。
A.AD=AEB.AB=ACC.BD=CED.∠ADB=∠AEC
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知AB是的直徑,直線L與相切于點C,,CD交AB于E,直線L,垂足為F,BF交于C.
圖中哪條線段與AE相等?試證明你的結(jié)論;
若,,求AB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BC=5,⊙O與Rt△ABC的三邊AB、BC、AC分別相切于點D、E、F,若⊙O的半徑r=2,則Rt△ABC的周長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在下列帶有坐標(biāo)系的網(wǎng)格中,△ABC的頂點都在邊長為1的小正方形的頂點上
(1) 直接寫出坐標(biāo):A__________,B__________
(2) 畫出△ABC關(guān)于y軸的對稱的△DEC(點D與點A對應(yīng))
(3) 用無刻度的直尺,運用全等的知識作出△ABC的高線BF(保留作圖痕跡)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀下列兩段材料,再解答下列問題:
(一)例題:分解因式:
解:將“”看成整體,設(shè),則原式,
再將“”換原,得原式;
上述解題目用到的是:整體思想,“整體思想”是數(shù)學(xué)解題中常用的一種思想方法;
(二)常用因式分解的方法有提公因式法和公式法,但有的多項式只用上述一種方法無法分解,例如,我們細(xì)心觀察就會發(fā)現(xiàn),前面兩項可以分解,后兩項也可以分解,分別分解后會產(chǎn)生公因式就可以完整分解了.
過程:
,
這種方法叫分組分解法,對于超過三項的多項式往往考慮這種方法.
利用上述數(shù)學(xué)思想方法解決下列問題:
(1)分解因式:
(2)分解因式:
(3)分解因式:;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(滿分8分)我們把依次連接任意四邊形各邊中點得到的四邊形叫做中點四邊形.
如圖,在四邊形ABCD中,E、F、G、H分別是AB、BC、CD、DA的中點,依次連接各邊中點得到中點四邊形EFGH.
(1)這個中點四邊形EFGH的形狀是____________;
(2)證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知x1,x2是方程x2﹣(2k﹣1)x+(k2+3k+5)=0的兩個實數(shù)根,且x12+x22=39,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,AB=AC=5,cosB=,P是邊AB上一點,以P為圓心,PB為半徑的⊙P與邊BC的另一個交點為D,聯(lián)結(jié)PD、AD.
(1)求△ABC的面積;
(2)設(shè)PB=x,△APD的面積為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;
(3)如果△APD是直角三角形,求PB的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com