【題目】某排球隊6名場上隊員的身高單位:是:180,184,188,190,192,現(xiàn)用一名身高為186cm的隊員換下場上身高為192cm的隊員.
(1)求換人前身高的平均數(shù)及換人后身高的平均數(shù);
(2)求換人后身高的方差.
【答案】(1)原數(shù)據(jù)的平均數(shù)為188(cm),新數(shù)據(jù)的平均數(shù)為187(cm);(2)換人后身高的方差為.
【解析】
(1)根據(jù)平均數(shù)的定義可分別求出原數(shù)據(jù)和新數(shù)據(jù)的平均數(shù).
(2)根據(jù)方差公式可求解.
(1)原數(shù)據(jù)的平均數(shù)為:=188(cm),
新數(shù)據(jù)的平均數(shù)為:=187(cm),
(2)換人后身高的方差為:×[(180–187)2+(184–187)2+(188–187)2+(190–187)2+(186–187)2+(194–187)2]=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,弦CD⊥AB,垂足為點E,CF⊥AF,且CF=CE.
(1)求證:CF是⊙O的切線;
(2)若sin∠BAC=,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,,,是的中點,是平面上的一點,且,連接.
(1)如圖,當點在線段上時,求的長;
(2)當是等腰三角形時,求的長;
(3)將點繞點順時針旋轉得到點,連接,求的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:如果把一條拋物線繞它的頂點旋轉180°得到的拋物線我們稱為原拋物線的“孿生拋物線”.
(1)求拋物線y=x-2x的“孿生拋物線”的表達式;
(2)若拋物線y=x-2x+c的頂點為D,與y軸交于點C,其“孿生拋物線”與y軸交于點,請判斷△DCC’的形狀,并說明理由:
(3)已知拋物線y=x-2x-3與y軸交于點C,與x軸正半軸的交點為A,那么是否在其“孿生拋物線”上存在點P,在y軸上存在點Q,使以點A、C、P、Q為頂點的四邊形為平行四邊形,若存在,求出P點的坐標;若不存在,說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某民營企業(yè)準備用14000元從外地購進A、B兩種商品共600件,其中A種商品的成本價為20元,B種商品的成本價為30元.
(1)該民營企業(yè)從外地購得A、B兩種商品各多少件?
(2)該民營企業(yè)計劃租用甲、乙兩種貨車共6輛,一次性將A、B兩種商品運往某城市,已知每輛甲種貨車最多可裝A種商品110件和B種商品20件;每輛乙種貨車最多可裝A種商品30件和B種商品90件,問安排甲、乙兩種貨車有幾種方案?請你設計出具體的方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場購進一種每件價格為100元的新商品,在商場試銷發(fā)現(xiàn):銷售單價x(元/件)與每天銷售量y(件)之間滿足如圖所示的關系:
(1)求出y與x之間的函數(shù)關系式;
(2)寫出每天的利潤W與銷售單價x之間的函數(shù)關系式;若你是商場負責人,會將售價定為多少,來保證每天獲得的利潤最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+2mx﹣m2+4.
(1)求證:該二次函數(shù)的圖象與x軸必有兩個交點;
(2)若該二次函數(shù)的圖象與x軸交于點A、B(點A在點B的左側),頂點為C,
①求△ABC的面積;
②若點P為該二次函數(shù)圖象上位于A、C之間的一點,則△PAC面積的最大值為 ,此時點P的坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC 中,AB=4,D 是 AB 上的一點(不與點 A、B 重合),DE∥BC,交AC 于點 E.設△ABC 的面積為 S,△DEC 的面積為 S'.
(1)當D是AB中點時,求的值;
(2)設AD=x,=y,求y與x的函數(shù)表達式,并寫出自變量x的取值范圍;
(3)根據(jù)y的范圍,求S-4S′的最小值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com