分析 (1)根據(jù)題意直接補全圖形;
(2)先判斷出△ABH為等腰直角三角形,進而得出△AHC≌△BHD,最后用對頂角和等量代換即可得出∠ADE+∠DAE=90°,結論得證;
(3)先利用同角或等角的余角相等得出結論即可判斷出△AHE≌△BHF,即可得出EH=FH,結論得證.
解答 解:(1)補全圖形如圖1所示;
(2)BD=AC;BD⊥AC;
理由:∵AH⊥BC于點H,∠ABC=45°,
∴△ABH為等腰直角三角形,
∴AH=BH,∠BAH=45°,
在△AHC和△BHD中,$\left\{\begin{array}{l}AH=BH\\∠AHC=∠BHD={90°}\\ HC=HD\end{array}\right.$
∴△AHC≌△BHD
∴AC=BD,∠ACH=∠BDH,
∵∠BDH=∠ADE,
∴∠ACH=∠ADE,
∵∠ACH+∠DAE=90°,
∴∠ADE+∠DAE=90°,
∴∠AEB=90°,
∴BD⊥AC;
(3)∵△AHC≌△BHD,
∴∠1=∠2
如圖2,過點H作HF⊥HE交BE于點F,
∴∠FHE=90°
即∠4+∠5=90°
又∵∠3+∠5=∠AHB=90°
∴∠3=∠4,
在△AHE和△BHF中,$\left\{\begin{array}{l}∠1=∠2\\ AH=BH\\∠4=∠3\end{array}\right.$
∴△AHE≌△BHF
∴EH=FH,
∵∠FHE=90°
∴△FHE是等腰直角三角形
∴∠BEH=45°,
點評 此題是三角形的全等的性質和判定,主要考查了等腰直角三角形的性質和判定,同角或等角的余角相等,構造出直角三角形EFH是解本題的關鍵,也是難點,注:出現(xiàn)直角,要聯(lián)想到互余.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com