【題目】如圖,為等邊三角形,邊上一點(diǎn),在上取一點(diǎn),使,在邊上取一點(diǎn),使,則的度數(shù)為(

A.B.C.D.

【答案】C

【解析】

根據(jù)等邊三角形的性質(zhì)及已知條件易證△EDB ≌△DFC,由全等三角形的性質(zhì)可得∠BED=CDF,由三角形的內(nèi)角和定理可得∠BED+BDE= 120°,即可得∠CDF+BDE= 120°,根據(jù)平角的定義即可求得∠EDF=60°.

是等邊三角形,

∴∠B=C=60°,

在△EDB和△DFC中,

,

∴△EDB ≌△DFC

∴∠BED=CDF,

∵∠B=60°,

∴∠BED+BDE= 120°,

∴∠CDF+BDE= 120°,

∴∠EDF=180°-(∠CDF+BDE=180°-120°=60°.

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形,.動(dòng)點(diǎn)分別從點(diǎn)、同時(shí)出發(fā),以的速度向點(diǎn)、運(yùn)動(dòng),連接、,取、的中點(diǎn),連接、.設(shè)運(yùn)動(dòng)的時(shí)間為.

1)求證:;

2)當(dāng)為何值時(shí),四邊形為菱形;

3)試探究:是否存在某個(gè)時(shí)刻,使四邊形為矩形,若存在,求出的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,將矩形折疊,使落在對(duì)角線上,折痕為,點(diǎn)落在點(diǎn) 處,若,則 ;

(2)小麗手中有一張矩形紙片,,.她準(zhǔn)備按如下兩種方式進(jìn)行折疊:

①如圖2,點(diǎn)在這張矩形紙片的邊上,將紙片折疊,使點(diǎn)落在邊上的點(diǎn)處,折痕為,若,求的長(zhǎng);

②如圖3,點(diǎn)在這張矩形紙片的邊上,將紙片折疊,使落在射線上,折痕為,點(diǎn)分別落在,處,若,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在甲、乙兩名同學(xué)中選拔一人參加英語口語聽力大賽,在相同的測(cè)試條件下,兩人5次測(cè)試成績(jī)(單位:分)如下:

甲:79,81,8285,83 乙:8879,9081,72

回答下列問題:

1甲成績(jī)的平均數(shù)是  乙成績(jī)的平均數(shù)是  ;

2)求甲、乙兩名同學(xué)測(cè)試成績(jī)的方差S2S2

3)請(qǐng)你選擇一個(gè)角度來判斷選拔誰參加比賽更合適

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,BC7cmCD5cm,PQ兩點(diǎn)分別從B、C兩點(diǎn)同時(shí)出發(fā),沿矩形ABCD的邊以1cm/s的速度逆時(shí)針運(yùn)動(dòng),點(diǎn)P到達(dá)點(diǎn)C時(shí)兩點(diǎn)同時(shí)停止運(yùn)動(dòng).當(dāng)點(diǎn)P的運(yùn)動(dòng)時(shí)間為_s時(shí),PQC為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AOBCOD均為等腰直角三角形,AOBCOD90°,點(diǎn)CD分別在邊OA、OB上的點(diǎn).連接AD,BC,點(diǎn)HBC中點(diǎn),連接OH

1)如圖1,求證:OHAD,OHAD;

2)將COD繞點(diǎn)O旋轉(zhuǎn)到圖2所示位置時(shí),⑴中結(jié)論是否仍成立?若成立,證明你的結(jié)論;若不成立,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校隨機(jī)選取了名學(xué)生,對(duì)他們喜歡的運(yùn)動(dòng)項(xiàng)目進(jìn)行調(diào)查,整理成以下統(tǒng)計(jì)表,其中“√”表示喜歡,“×”表示不喜歡.

項(xiàng)目
學(xué)生數(shù)

長(zhǎng)跑

短跑

跳繩

跳遠(yuǎn)

200

×

300

×

×

150

×

200

×

×

150

×

×

×

(1)估計(jì)該校學(xué)生同時(shí)喜歡短跑和跳繩的概率;

(2)估計(jì)該校學(xué)生在長(zhǎng)跑、短跑、跳繩、跳遠(yuǎn)中同時(shí)喜歡三個(gè)項(xiàng)目的概率;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,半徑為1個(gè)單位的圓片上有一點(diǎn)A與數(shù)軸上的原點(diǎn)重合,AB是圓片的直徑.(結(jié)果保留π

1)把圓片沿?cái)?shù)軸向左滾動(dòng)1周,點(diǎn)A到達(dá)數(shù)軸上點(diǎn)C的位置,點(diǎn)C表示的數(shù)是 數(shù)(填無理有理),這個(gè)數(shù)是

2)把圓片沿?cái)?shù)軸滾動(dòng)2周,點(diǎn)A到達(dá)數(shù)軸上點(diǎn)D的位置,點(diǎn)D表示的數(shù)是 ;

3)圓片在數(shù)軸上向右滾動(dòng)的周數(shù)記為正數(shù),圓片在數(shù)軸上向左滾動(dòng)的周數(shù)記為負(fù)數(shù),依次運(yùn)動(dòng)情況記錄如下:+2,﹣1,+3,﹣4,﹣3.第幾次滾動(dòng)后,A點(diǎn)距離原點(diǎn)最近?第幾次滾動(dòng)后,A點(diǎn)距離原點(diǎn)最遠(yuǎn)?

查看答案和解析>>

同步練習(xí)冊(cè)答案