【題目】隨著人們環(huán)保意識(shí)的不斷增強(qiáng),延安市家庭電動(dòng)自行車(chē)的擁有量逐年增加.據(jù)統(tǒng)計(jì),某小區(qū)2016年底擁有家庭電動(dòng)自行車(chē)125輛,2018年底家庭電動(dòng)自行車(chē)的擁有量達(dá)到180輛.若該小區(qū)2016年底到2018年底家庭電動(dòng)自行車(chē)擁有量的平均增長(zhǎng)率相同且均為x,則可列方程為( )
A.125=180B.=180
C.125(1+x)(1+2x)=180D.125=180
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校在七年級(jí)、八年級(jí)開(kāi)展了閱讀文學(xué)名著知識(shí)競(jìng)賽.該校七、八年級(jí)各有學(xué)生400人,各隨機(jī)抽取20名學(xué)生進(jìn)行了抽樣調(diào)查,獲得了他們知識(shí)競(jìng)賽成績(jī)(單位:分),并對(duì)數(shù)據(jù)進(jìn)行整理、描述和分析.下面給出了部分信息.
a.七年級(jí)學(xué)生知識(shí)競(jìng)賽成績(jī)的平均數(shù)、中位數(shù)、眾數(shù)、優(yōu)秀率(80分及以上)如下表所示:
年級(jí) | 平均數(shù) | 中位數(shù) | 眾數(shù) | 優(yōu)秀率 |
七年級(jí) | 84. 2 | 77 | 74 | 45﹪ |
b.八年級(jí)學(xué)生知識(shí)競(jìng)賽成績(jī)的扇形統(tǒng)計(jì)圖如下(數(shù)據(jù)分為5組,A:50≤x≤59; B:60≤x≤69;C:70≤x≤79;D:80≤x≤89;E:90≤x≤100)
c.八年級(jí)學(xué)生知識(shí)競(jìng)賽成績(jī)?cè)?/span>D組的是:87 88 88 88 89 89 89 89
根據(jù)以上信息,回答下列問(wèn)題:
(1)八年級(jí)學(xué)生知識(shí)競(jìng)賽成績(jī)的中位數(shù)是 分;
(2)請(qǐng)你估計(jì)該校七、八年級(jí)所有學(xué)生中達(dá)到“優(yōu)秀”的有多少人?
(3)下列結(jié)論:①八年級(jí)成績(jī)的眾數(shù)是89分;②八年級(jí)成績(jī)的平均數(shù)可能為86分;③八年級(jí)成績(jī)的極差可能為50分.其中所有正確結(jié)論的序號(hào)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】
如圖,直角梯形ABCD中,AB∥DC,,,.動(dòng)點(diǎn)M以每秒1個(gè)單位長(zhǎng)的速度,從點(diǎn)A沿線段AB向點(diǎn)B運(yùn)動(dòng);同時(shí)點(diǎn)P以相同的速度,從點(diǎn)C沿折線C-D-A向點(diǎn)A運(yùn)動(dòng).當(dāng)點(diǎn)M到達(dá)點(diǎn)B時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).過(guò)點(diǎn)M作直線l∥AD,與線段CD的交點(diǎn)為E,與折線A-C-B的交點(diǎn)為Q.點(diǎn)M運(yùn)動(dòng)的時(shí)間為t(秒).
(1)當(dāng)時(shí),求線段的長(zhǎng);
(2)當(dāng)0<t<2時(shí),如果以C、P、Q為頂點(diǎn)的三角形為直角三角形,求t的值;
(3)當(dāng)t>2時(shí),連接PQ交線段AC于點(diǎn)R.請(qǐng)?zhí)骄?/span>是否為定值,若是,試求這個(gè)定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將三角形ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到三角形EDC.若點(diǎn)A,D,E在同一條直線上,∠ACB=20°,求∠ADC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某青春黨支部在精準(zhǔn)扶貧活動(dòng)中,給結(jié)對(duì)幫扶的貧困家庭贈(zèng)送甲、乙兩種樹(shù)苗讓其栽種.已知乙種樹(shù)苗的價(jià)格比甲種樹(shù)苗貴10元,用480元購(gòu)買(mǎi)乙種樹(shù)苗的棵數(shù)恰好與用360元購(gòu)買(mǎi)甲種樹(shù)苗的棵數(shù)相同.
(1)求甲、乙兩種樹(shù)苗每棵的價(jià)格各是多少元?
(2)在實(shí)際幫扶中,他們決定再次購(gòu)買(mǎi)甲、乙兩種樹(shù)苗共50棵,此時(shí),甲種樹(shù)苗的售價(jià)比第一次購(gòu)買(mǎi)時(shí)降低了10%,乙種樹(shù)苗的售價(jià)不變,如果再次購(gòu)買(mǎi)兩種樹(shù)苗的總費(fèi)用不超過(guò)1500元,那么他們最多可購(gòu)買(mǎi)多少棵乙種樹(shù)苗?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(定義學(xué)習(xí))
定義:如果四邊形有一組對(duì)角為直角,那么我們稱這樣的四邊形為“對(duì)直四邊形”.
(判斷嘗試)
在A.矩形;B.菱形;C.正方形中;一定是“對(duì)直四邊形”的是______.(填字母序號(hào))
(操作探究)
在菱形ABCD中,AB=2,∠B=60°,AE⊥BC于點(diǎn)E,請(qǐng)用尺規(guī)作圖法在邊AD和CD上各找一點(diǎn)F,使得由點(diǎn)A、E、C、F組成的四邊形為“對(duì)直四邊形”,連接EF,并直接寫(xiě)出EF的長(zhǎng).(保留作圖痕跡,不寫(xiě)作法)
(1)當(dāng)點(diǎn)F在邊AD上時(shí).
(2)當(dāng)點(diǎn)F在邊CD上時(shí).
(實(shí)踐應(yīng)用)
某加工廠有一批四邊形板材,形狀如圖所示,已知AB=3米,AD=1米,∠C=45°,∠A=∠B=90°.現(xiàn)根據(jù)客戶要求,需將每張四邊形板材進(jìn)一步分割成兩個(gè)等腰三角形板材和一個(gè)“對(duì)直四邊形”板材,且這兩個(gè)等腰三角形的腰長(zhǎng)相等,要求充分利用材料且無(wú)剩余,求分割后得到的等腰三角形的腰長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A和點(diǎn)B都是反比例函數(shù)在第一象限內(nèi)圖象上的點(diǎn),點(diǎn)A的橫坐標(biāo)為1,點(diǎn)B的縱坐標(biāo)為1,連接AB,以線段AB為邊的矩形ABCD的頂點(diǎn)D,C恰好分別落在x軸,y軸的負(fù)半軸上,連接AC,BD交于點(diǎn)E,若的面積為6,則k的值為( )
A.2B.3C.6D.12
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(問(wèn)題提出)我們知道:同弧或等弧所對(duì)的圓周角都相等,且等于這條弧所對(duì)的圓心角的一半.那么,在一個(gè)圓內(nèi)同一條弦所對(duì)的圓周角與圓心角之間又有什么關(guān)系?
(初步思考)(1)如圖,是的弦,,點(diǎn)、分別是優(yōu)弧和劣弧上的點(diǎn),則______°._______°.
(2)如圖,是的弦,圓心角,點(diǎn)P是上不與A、B重合的一點(diǎn),求弦所對(duì)的圓周角的度數(shù)(用m的代數(shù)式表示).
(問(wèn)題解決)(3)如圖,已知線段,點(diǎn)C在所在直線的上方,且.用尺規(guī)作圖的方法作出滿足條件的點(diǎn)C所組成的圖形(不寫(xiě)作法,保留作圖痕跡).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),已知△OAB是等腰直角三角形,且∠OAB=90°,若點(diǎn)A的坐標(biāo)(3,1),則點(diǎn)B的坐標(biāo)為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com