【題目】如圖所示,在矩形ABCD中,AB=20cm,BC=4cm,點P從點A開始沿折線ABCD以4cm/s的速度運動,點Q從點C開始沿CD邊以1cm/s的速度運動,如果點P,Q分別從點A,C同時出發(fā),當(dāng)其中一點到達點D時,另一點也隨之停止運動,設(shè)運動時間為ts,則t為何值時,四邊形APQD是矩形?
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點,,…,在函數(shù)位于第二象限的圖象上,點,,…,在函數(shù)位于第一象限的圖象上,點,,…,在軸的正半軸上,若四邊形、,…,都是正方形,則正方形的邊長為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:若m2﹣2mn+2n2﹣8n+16=0,求m,n的值.
解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0.
∴(m﹣n)2+(n﹣4)2=0,∵(m﹣n)2≥0,(n﹣4)2≥0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.
根據(jù)你的觀察,探究下面的問題:
(1)已知:x2+2xy+2y2+2y+1=0,求2x+y的值;
(2)已知:△ABC的三邊長a,b,c都是正整數(shù),且滿足:a2+b2﹣12a﹣16b+100=0,求△ABC的最大邊c的值;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個袋子中裝有大小相同的個小球,其中個藍色,個紅色.
從袋中隨機摸出個,求摸到的是藍色小球的概率;
從袋中隨機摸出個,用列表法或樹狀圖法求摸到的都是紅色小球的概率;
在這個袋中加入個紅色小球,進行如下試驗:隨機摸出個,然后放回,多次重復(fù)這個試驗,通過大量重復(fù)試驗后發(fā)現(xiàn),摸到紅色小球的頻率穩(wěn)定在,則可以推算出的值大約是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AF、CE分別是∠BAD和∠BCD的角平分線,根據(jù)現(xiàn)有的圖形,請?zhí)砑右粋條件,使四邊形AECF為菱形,則添加的一個條件可以是__________.(只需寫出一個即可,圖中不能再添加別的“點”和“線”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等邊三角形ABC中,D是邊AC上一點,連接BD,將△BCD繞點B逆時針旋轉(zhuǎn)60°,得到△BAE,連接ED,若BC=5,BD=4,有下列結(jié)論:①AE∥BC;②∠ADE=∠BDC;③△BDE是等邊三角形;④△ADE的周長是9.其中,正確結(jié)論的個數(shù)是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A,B,C的坐標(biāo)分別為(1,0),(0,1),(-1,0).一個電動玩具從坐標(biāo)原點0出發(fā),第一次跳躍到點P1.使得點P1與點O關(guān)于點A成中心對稱;第二次跳躍到點P2,使得點P2與點P1關(guān)于點B成中心對稱;第三次跳躍到點P3,使得點P3與點P2關(guān)于點C成中心對稱;第四次跳躍到點P4,使得點P4與點P3關(guān)于點A成中心對稱;第五次跳躍到點P5,使得點P5與點P4關(guān)于點B成中心對稱;…照此規(guī)律重復(fù)下去,則點P2016的坐標(biāo)為_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料
在因式分解中,把多項式中某些部分看作一個整體,用一個新的字母代替(即換元),不僅可以簡化要分解的多項式的結(jié)構(gòu),而且能使式子的特點更加明顯,使于觀察如何進行因式分解我們把這種因式分解的方法稱為“換元 法”.下面是小涵同學(xué)用換元法對多項式(x+4x+1)(x+4x+7)+9 進行因式分解的過程.
解:設(shè) x+4x=y
原式=(y+1)(y+7)+9 (第一步)
=y+8y+16 (第二步)
=(y+4) (第三步)
=(x+4x+4) (第四步)
請根據(jù)上述材料回答下列問題:
(1)小涵同學(xué)的解法中,第二步到第三步運用了因式分解的 .
A.提取公因式法 B.平方差公式法 C.完全平方公式法
(2)老師說,小涵同學(xué)因式分解的結(jié)果不徹底,請你寫出該因式分解的最后結(jié)果: .
(3)請你用換元法對多項式(x-2x)(x-2x+2)+1 進行因式分解
(4)當(dāng) x= 時,多項式(x-2x)(x-2x+2)-1 存在最 值(填“大”或“小”).請你求出這 個最值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀下列一段文字,再回答后面的問題.
已知在平面內(nèi)兩點P1(x1,y1),P2(x2,y2),這兩點間的距離P1P2=,同時,當(dāng)兩點所在的直線在坐標(biāo)軸或平行于坐標(biāo)軸或垂直于坐標(biāo)軸時,兩點間距離公式可簡化為|x2﹣x1|或|y2﹣y1|.
(1)已知A(3,3),B(﹣2,﹣1),試求A,B兩點間的距離;
(2)已知A,B在平行于y軸的直線上,點A的縱坐標(biāo)為7,點B的縱坐標(biāo)為﹣2,試求A,B兩點間的距離;
(3)已知一個三角形各頂點坐標(biāo)為A(0,5),B(﹣3,2),C(3,2),你能判斷此三角形的形狀嗎?說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com