【題目】鄰邊不相等的平行四邊形紙片,剪去一個(gè)菱形,余下一個(gè)四邊形,稱(chēng)為第一次操作;在余下的四邊形紙片中再剪去一個(gè)菱形,又余下一個(gè)四邊形,稱(chēng)為第二次操作;……依次類(lèi)推,若第n次操作余下的四邊形是菱形,則稱(chēng)原平行四邊形為n階準(zhǔn)菱形,如圖1,平行四邊形中,若,則平行四邊形為1階準(zhǔn)菱形.
(1)判斷與推理:
① 鄰邊長(zhǎng)分別為2和3的平行四邊形是__________階準(zhǔn)菱形;
② 小明為了剪去一個(gè)菱形,進(jìn)行如下操作:如圖2,把平行四邊形沿著折疊(點(diǎn)在上)使點(diǎn)落在邊上的點(diǎn),得到四邊形,請(qǐng)證明四邊形是菱形.
(2)操作、探究與計(jì)算:
① 已知平行四邊形的鄰邊分別為1,裁剪線(xiàn)的示意圖,并在圖形下方寫(xiě)出的值;
② 已知平行四邊形的鄰邊長(zhǎng)分別為,滿(mǎn)足,請(qǐng)寫(xiě)出平行四邊形是幾階準(zhǔn)菱形.
【答案】(1)① 2,②證明見(jiàn)解析;(2)①見(jiàn)解析,②ABCD是10階準(zhǔn)菱形.
【解析】
(1)①根據(jù)鄰邊長(zhǎng)分別為2和3的平行四邊形經(jīng)過(guò)兩次操作,即可得出所剩四邊形是菱形,即可得出答案;
②根據(jù)平行四邊形的性質(zhì)得出AE∥BF,進(jìn)而得出AE=BF,即可得出答案;
(2)①利用3階準(zhǔn)菱形的定義,即可得出答案;
②根據(jù)a=6b+r,b=5r,用r表示出各邊長(zhǎng),進(jìn)而利用圖形得出ABCD是幾階準(zhǔn)菱形.
解:(1)①利用鄰邊長(zhǎng)分別為2和3的平行四邊形經(jīng)過(guò)兩次操作,所剩四邊形是邊長(zhǎng)為1的菱形,
故鄰邊長(zhǎng)分別為2和3的平行四邊形是2階準(zhǔn)菱形;
故答案為:2;
②由折疊知:∠ABE=∠FBE,AB=BF,
∵四邊形ABCD是平行四邊形,
∴AE∥BF,
∴∠AEB=∠FBE,
∴∠AEB=∠ABE,
∴AE=AB,
∴AE=BF,
∴四邊形ABFE是平行四邊形,
∴四邊形ABFE是菱形;
(2)①如圖所示:
,
②答:10階菱形,
∵a=6b+r,b=5r,
∴a=6×5r+r=31r;
如圖所示:
故ABCD是10階準(zhǔn)菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形中,是對(duì)角線(xiàn),以為邊向四邊形內(nèi)部作正方形,連接,則的長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了掌握我市中考模擬數(shù)學(xué)考試卷的命題質(zhì)量與難度系數(shù),調(diào)研老師在我市某地選取一個(gè)水平相當(dāng)?shù)某跞昙?jí)進(jìn)行調(diào)研,將隨機(jī)抽取的部分學(xué)生成績(jī)(得分為整數(shù),滿(mǎn)分為150分)分為5組(從左到右的順序).統(tǒng)計(jì)后得到如圖所示的頻數(shù)分布直方圖(每組含最小值不含最大值)和扇形統(tǒng)計(jì)圖.觀察圖形的信息,回答下列問(wèn)題:
(1)本次調(diào)查共隨機(jī)抽取了該年級(jí)___________名學(xué)生,考試成績(jī)120分以上(含120分)學(xué)生有_________名;
(2)規(guī)定:成績(jī)位于前5%的可獲得小禮品一份,在被調(diào)查的學(xué)生中,某位學(xué)生成績(jī)?yōu)?/span>134分,試判斷他是否能獲獎(jiǎng),說(shuō)明理由;
(3)如果第一組中只有一名是女生,第五組中只有一名是男生,針對(duì)考試成績(jī)情況,命題教師決定從第一組、第五組分別隨機(jī)選出一名同學(xué)談?wù)勛鲱}的感想…,請(qǐng)你用列表或畫(huà)樹(shù)狀圖的方法求出所選兩名學(xué)生剛好是一名女生和一名男生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,AC與BD交于點(diǎn)E,點(diǎn)E是BD的中點(diǎn),延長(zhǎng)CD到點(diǎn)F,使DF=CD,連接AF,
(1)求證:AE=CE;
(2)求證:四邊形ABDF是平行四邊形;
(3)若AB=2,AF=4,∠F=30°,則四邊形ABCF的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為紀(jì)念建國(guó)70周年,某校舉行班級(jí)歌詠比賽,歌曲有:《我愛(ài)你,中國(guó)》,《歌唱祖國(guó)》,《我和我的祖國(guó)》(分別用字母A,B,C依次表示這三首歌曲).比賽時(shí),將A,B,C這三個(gè)字母分別寫(xiě)在3張無(wú)差別不透明的卡片正面上,洗勻后正面向下放在桌面上,八(1)班班長(zhǎng)先從中隨機(jī)抽取一張卡片,放回后洗勻,再由八(2)班班長(zhǎng)從中隨機(jī)抽取一張卡片,進(jìn)行歌詠比賽.
(1)八(1)班抽中歌曲《我和我的祖國(guó)》的概率是__________;
(2)試用畫(huà)樹(shù)狀圖或列表的方法表示所有可能的結(jié)果,并求出八(1)班和八(2)班抽中不同歌曲的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC的頂點(diǎn)O是坐標(biāo)原點(diǎn),點(diǎn)A在第一象限,點(diǎn)C在第四象限,點(diǎn)B在x軸的正半軸上.∠OAB=90°且OA=AB,OB,OC的長(zhǎng)分別是二元一次方程組的解(OB>OC).
(1)求點(diǎn)A和點(diǎn)B的坐標(biāo);
(2)點(diǎn)P是線(xiàn)段OB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)O,B重合),過(guò)點(diǎn)P的直線(xiàn)l與y軸平行,直線(xiàn)l交邊OA或邊AB于點(diǎn)Q,交邊OC或邊BC于點(diǎn)R.設(shè)點(diǎn)P的橫坐標(biāo)為t,線(xiàn)段QR的長(zhǎng)度為m.已知t=4時(shí),直線(xiàn)l恰好過(guò)點(diǎn)C.
①當(dāng)0<t<3時(shí),求m關(guān)于t的函數(shù)關(guān)系式;
②當(dāng)m=時(shí),求點(diǎn)P的橫坐標(biāo)t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O中,AB是⊙O的直徑,G為弦AE的中點(diǎn),連接OG并延長(zhǎng)交⊙O于點(diǎn)D,連接BD交AE于點(diǎn)F,延長(zhǎng)AE至點(diǎn)C,使得FC=BC,連接BC.
(1)求證:BC是⊙O的切線(xiàn);
(2)⊙O的半徑為5,tanA=,求FD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是⊙O的切線(xiàn),切點(diǎn)為A,BC交⊙O于點(diǎn)D,點(diǎn)E是AC的中點(diǎn).
(1)試判斷直線(xiàn)DE與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若⊙O的半徑為2,∠B=50°,AC=6,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知二次函數(shù)y=ax2+bx+c的圖象與x交于A,B兩點(diǎn),與y軸交于點(diǎn)C,對(duì)稱(chēng)軸為直線(xiàn)x=1.直線(xiàn)y=﹣x+c與拋物線(xiàn)y=ax2+bx+c交于C,D兩點(diǎn),D點(diǎn)在x軸下方且橫坐標(biāo)小于3,則下列結(jié)論錯(cuò)誤的是( 。
A.2a+b+c>0
B.a<﹣1
C.x(ax+b)≤a+b
D.雙曲線(xiàn)y=的兩分支分別位于第一、第三象限
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com