【題目】如圖,DC⊙O的直徑,點(diǎn)B在圓上,直線ABCD延長線于點(diǎn)A,且∠ABD=∠C.

(1)求證:AB⊙O的切線;

(2)若AB=4cm,AD=2cm,求CD的長.

【答案】(1)見解析;(2)CD=6.

【解析】

(1)連結(jié)OB,由圓周角定理證出∠1+∠2=90°,再由已知條件得出∠2+∠ABD=90°,得出∠ABO=90°即可;

(2)證明ABD∽△ACB根據(jù)相似三角形的性質(zhì)列式求出AC的長,進(jìn)而可求出CD的長.

(1)證明:連接OB,如圖,

∵DC⊙O的直徑,

∴∠CBD=90°,即∠1+∠2=90°,

∵OB=OC,

∴∠1=∠C,

∵∠C=∠ABD,

∴∠ABD+∠2=90°,即∠ABO=90°,

∴OB⊥AB,

∴AB⊙O的切線;

(2)解:∵∠BAD=∠CAB,∠ABD=∠C,

∴△ABD∽△ACB,

=,即=,

∴AC=8,

∴CD=AC-AD=8-2=6.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,二次函數(shù)≠0的圖像經(jīng)過點(diǎn)(3,5)、(2,8)、(0,8).

①求這個二次函數(shù)的解析式;

②已知拋物線≠0≠0,且滿足≠0,1,則我們稱拋物線互為“友好拋物線”,請寫出當(dāng)時第①小題中的拋物線的友好拋物線,并求出這“友好拋物線”的頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線,點(diǎn)A1坐標(biāo)為(1,0),過點(diǎn)A1x軸的垂線交直線于點(diǎn)B1B,以原點(diǎn)O為圓心,OB1長為半徑畫弧交x軸于點(diǎn)A2;再過點(diǎn)A2x的垂線交直線于點(diǎn)B2, 以原點(diǎn)O為圓心,OB2長為半徑畫弧交x軸于點(diǎn)A3,…,按此做法進(jìn)行下去,點(diǎn)A5的坐標(biāo)為( )

A. (16,0) B. (12,0) C. (8,0) D. (32,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象分別經(jīng)過點(diǎn)(0,3)(3,0)(﹣2,﹣5),

(1)求這個二次函數(shù)的解析式;

(2)若這個二次函數(shù)的圖象與x軸交于點(diǎn)C、D(C點(diǎn)在點(diǎn)D的左側(cè)),且點(diǎn)A是該圖象的頂點(diǎn),請在這個二次函數(shù)的對稱軸上確定一點(diǎn)B,使ABC是等腰三角形,求出點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰△ABC 中,∠BAC=120°,AB=AC=2,點(diǎn) D 在邊 BC 上,CD=,將線段 CD 繞點(diǎn) C 逆時針旋轉(zhuǎn)α°(其中 0<α≤360)到 CE,連接AE,以 AB,AE 為邊作 ABFE,連接 DF,則 DF 的最大值為(

A. + B. + C. 2+ D. +2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰 Rt△ABC 中,AC=BC= 2,點(diǎn) P 在以斜邊 AB 為直徑的半圓上,M 為 PC的中點(diǎn).當(dāng)點(diǎn) P 沿半圓從點(diǎn) A 運(yùn)動至點(diǎn) B 時,點(diǎn) M 運(yùn)動的路徑長是( )

A. 2 B. 2 C. π D. π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線 yax2bx+3 經(jīng)過點(diǎn)(2,-1), x 軸交于 A(1,0)、B 兩點(diǎn) y軸交于點(diǎn) C

(1) 求拋物線解析式

(2) 如圖,點(diǎn) E 是直線 BC 下方拋物線上的一動點(diǎn).當(dāng)BEC 面積最大時,請求出點(diǎn) E 的坐標(biāo)

(3) 點(diǎn) P 是第四象限內(nèi)拋物線上的一動點(diǎn),PA y 軸于 D,BP y 軸于 E, P PN⊥y 軸于N,的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在求同一坐標(biāo)軸上兩點(diǎn)間的距離時發(fā)現(xiàn),對于平面直角坐標(biāo)系內(nèi)任意兩點(diǎn)P1(x1,y1),P2(x2,y2),可通過構(gòu)造直角三角形利用勾股定理得到結(jié)論:P1P2=;他還證明了線段P1P2的中點(diǎn)P(x,y)的坐標(biāo)公式是:x=,y=;

啟發(fā)應(yīng)用

請利用上面的信息,解答下面的問題:

如圖,在平面直角坐標(biāo)系中,已知A(8,0),B(0,6),C(1,7),⊙M經(jīng)過原點(diǎn)O及點(diǎn)A、B.

(1)求⊙M的半徑及圓心M的坐標(biāo);

(2)判斷點(diǎn)C與⊙M的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)學(xué)活動課上,小麗為了測量校園內(nèi)旗桿AB的高度,站在教學(xué)樓的C處測得旗桿底端B的俯角為45°,測得旗桿頂端A的仰角為30°.已知旗桿與教學(xué)樓的距離BD=9m,請你幫她求出旗桿的高度(結(jié)果保留根號).

查看答案和解析>>

同步練習(xí)冊答案